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Abstract 

This work introduces a new 3-D chaotic system with a line of equilibrium points. We carry out a detailed 

dynamic analysis of the proposed chaotic system with five nonlinear terms. We show that the chaotic system 

exhibits multistability with two coexisting chaotic attractors. We apply integral sliding mode control for the 

complete synchronization of the new chaotic system with itself as leader-follower systems.  

 

Keywords:  Chaos, chaotic systems, synchronization, line equilibrium 
 

1. Introduction 

Chaotic systems are nonlinear dynamical systems with a positive Lyapunov exponent and 

extreme sensitivity to even small changes in their initial states (Qi et al., 2005). Chaos theory has 

several applications like jerk systems (Sambas et al., 2021a; Qin et al., 2021), mechanical oscillators 

(Belato et al., 2021), neurons (Baysal et al., 2021), fuzzy systems (Sukono et al., 2020; Xia et al., 

2020), circuits (Sambas et al., 2021b; Vaidayanathan et al., 2021; Abro and Atangana, 2021), neural 

networks (Gao, et al., 2021), secure communications (Zhou, et al., 2021; Pan, et al., 2021), image 

encryption (Sambas et al., 2020; Ouannas, et al., 2021), finance (Bambe, et al., 2020; Moutsinga et 

al., 2020), robotic (Vaidyanathan et al., 2017) etc. 

In the chaos literature, there is good interest shown in finding of chaotic systems with line 

equilibrium points (Jalal, et al., 2020; Sambas et al., 2019). Such systems are said to possess hidden 

attractors as they possess an infinite number of equilibrium points (Tlelo-Cuautle et al., 2017). In 

this research paper, we propose a new chaotic system with line equilibrium.  
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Multistablity is a special property of nonlinear dynamics systems which is the coexistence of 

periodic orbits and/or chaotic attractors for same parameter set but different initial conditions 

(Chakraborty and Poria, 2019; Mobayen et al., 2021). In this work, we show that the new chaotic 

system has multistability with coexisting attractors. 

Control of dynamical systems exhibiting chaos is an active research area in the control literature 

(Peng and Chen, 2008). Many control methods are used in control engineering for the control and 

synchronization of chaotic systems such as nonlinear control (Cai and Tan, 2007), adaptive control 

(Vaidyanathan, 2015), backstepping control (Yassen, 2006), sliding mode control (Jang et al., 2002), 

etc. In this work, we use integral sliding mode control to derive global synchronization of the new 

chaotic systems taken as leader-follower systems with unknown constants. Sliding mode control has 

attractive properties such as fast convergence, robustness etc. (Vaidyanathan et al., 2019). 

This research work is organized in the following manner. Section 2 gives the mathematical 

model of the new chaotic system with face-like equilibrium curve. Section 3 investigates the global 

self-synchronization of the new chaotic systems considered as leader-follower systems using 

adaptive control. Section 4 contains the conclusions. 

2. A New Chaotic System with a Line of Equilibrium Points 

In this work, we consider a new 3-D system having the dynamics 

   

1 2 3

2 1 2

2 4 2

3 1 1 1 2| |

y y y

y y y

y a y by cy dy

 


 


   

       (1) 

In (1), 
1 2 3( , , )Y y y y is the state vector and ( , , , )a b c d is the parameter vector.  

We show that the system (1) exhibits a chaotic attractor when the parameter vector is taken as 

  6,  0.5,  2,  0.1a b c d           (2) 

For MATLAB plot, we take the initial state of the chaotic system (1) as 

  
1 2 3(0) 0.4,   (0) 0.2,   (0) 0.4y y y         (3) 

Using Wolf algorithm (Wolf, et al., 1985), we calculate the Lyapunov characteristic exponents 

(LCE) in MATLAB for the 3-D system (1) for the parameters (2) and the initial state (3) for 

1 5T E  seconds as follows:  

1 2 30.1812,   0,   1.1782              (4) 

Figure 1 shows the Lyapunov exponents of the new chaotic system (1) for  

( , , , ) (6,0.5,2,0.1)a b c d  and the initial state (0) (0.4,0.2,0.4).Y       

The system (1) is chaotic since it possesses a positive Lyapunov characteristic exponent 

1 0.1812.   We also find that
1 2 3 0.9970 0.       Since the sum of the Lyapunov 

characteristic exponents is negative, we deduce that the 3-D system (1) is dissipative.  

The Kaplan-Yorke dimension of the new chaotic system (1) is calculated as follows: 

1 2

3

0.1812 0
2 2 2.1538

| | 1.1782
KYD

 



 
          (5) 
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Figure 2 shows the MATLAB plots of the new chaotic system (1) in various coordinate planes 

and the 3-D space for the parameter vector ( , , , ) (6,0.5,2,0.1)a b c d   and  (0) (0.4,0.2,0.4).Y   

   

Figure 1. Lyapunov exponents of the new 3-D chaotic system (1) for the parameter state  

( , , , ) (6,0.5,2,0.1)a b c d  and initial state (0) (0.4,0.2,0.4).Y    

 

The equilibrium points of the chaotic system (1) are obtained by solving the system of equations: 

                            2 3 0y y        (6a) 

                                            1 2 0y y        (6b) 

                             
2 4 2

1 1 1 2| | 0a y by cy dy           (6c) 

 From (6b), we see that 1 2.y y Hence, the equations (6a) reduce to the system: 

  1 3 0y y        (7a) 

                       
2 4

1 1 1| | ( ) 0a y b d y cy           (7b) 

From (7a), 1 0y  or 3 0.y    

If 1 0,y  then 2 1 0.y y   In this case, the 3y  axis is a line equilibrium for the system (1). 

If 1 0,y  then 3 0.y   Solving (7b) for the parameter values ( , , , ) (6,0.5,2,0.1),a b c d  we get 

three roots namely 1 0,y  1 1.3730y  and 1 1.3730.y    

Since 2 1,y y we get corresponding values of 2 ,y viz. 2 0,y  2 1.3730y  and 2 1.3730.y    
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Thus, we get three equilibrium points on the  1 2,y y  plane as follows: 
0 (0,0,0), 

1 (1.3730,1.3730,0)  and 
2 ( 1.3730, 1.3730,0).     The point 0 lies on the 3y  axis. 

Thus, this is already included in the equilibrium points of the system (1). 

Hence, the equilibrium points of the system (1) consists of the 3y  axis and the two equilibria 

on the  1 2,y y   plane given by 
1 (1.3730,1.3730,0)  and 

2 ( 1.3730, 1.3730,0).     It is 

easy to verify that 1 and 2 are unstable saddle focus points for the chaotic system (1). 

 

 

 
 

(a) (b) 

  

(c) (d) 

 

Figure 2. MATLAB signal plots of the new 3-D chaotic system (1) for ( , , , ) (6,0.5,2,0.1)a b c d    and 

(0) (0.4,0.2,0.4).Y   
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Multistability, namely coexisting attractors with same parameters but different initial values, is 

an interesting nonlinear phenomenon in chaotic systems. 

When fixing the parameters as ( , , , ) (6,0.5,2,0.1)a b c d    and the initial conditions as

0 (0.4,0.2,0.4),Y   (blue), 
0 ( 0.8, 0.8, 0.8)Z      (red), two coexisting chaotic attractors are 

obtained for the chaotic system (1) as shown in Figure 3. 

     
                                  (a)                                (b) 

Figure 3.  Phase portraits of the coexisting chaotic attractors of the 3-D system (1) for   

( , , , ) (6,0.5,2,0.1)a b c d   : (a)  1 2( , )y y  plane and (b)  
2 3( , )y y  plane. 

 

3. Global Synchronization of the New Chaotic Systems with Line Equilibrium via 
Integral Sliding Mode Control 

As a control application, we employ integral sliding mode control for the global synchronization 

between the states of the new chaotic systems taken as leader-follower systems. 

As the leader system, we consider the new chaotic system with line equilibrium described by 

1 2 3

2 1 2

2 4 2

3 1 1 1 2| |

y y y

y y y

y a y by cy dy

 


 


   

          (8) 

We denote the state of the leader system (9) as 1 2 3( , , ).Y y y y   

As the follower system, we take the controlled chaotic system with line equilibrium described by 

 

1 2 3 1

2 1 2 2

2 4 2

3 1 1 1 2 3| |

z z z v

z z z v

z a z bz cz dz v

  


  


    

       (9) 
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We denote the state of the follower system (10) as 
1 2 3( , , ).Z z z z   

In the system (9), 
1 2 3( , , )v v v v is an integral sliding mode control to be designed using sliding 

mode control theory. 

The synchronization errors between the chaotic systems (8) and (9) are defined in the following 

manner: 

1 1 1

2 2 2

3 3 3

z y

z y

z y







 


 
  

         (10) 

We obtain the following system for the error dynamics: 

1 2 3 2 3 1

2 1 2 2

2 2 4 4 2 2

3 1 1 1 1 1 1 2 2 3(| | | |) ( ) ( ) ( )

z z y y v

v

a z y b z y c z y d z y v



  



   


  


        

   (11) 

In the ISMC design, an integral sliding manifold is defined for each error variable as follows: 

1 1 1 1

0

2 2 2 2

0

3 3 3 3

0

( )

( )

( )

t

t

t

S d

S d

S d

    

    

    


 





 


  








        (12) 

From (12), we deduce the following: 

1 1 1 1

2 2 2 2

3 3 3 3

S

S

S

  

  

  

  


 


 

         (13) 

In the ISMC design, we assume that 0i  for 1,2,3.i   

Based on the exponential reaching law [48], we set the following: 

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

sgn( )

sgn( )

sgn( )

S S K S

S S K S

S S K S







   


  


  

        (14) 

By comparing the equations (13) and (14), we get the following: 
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1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3 3 3 3

sgn( )

sgn( )

sgn( )

S K S

S K S

S K S

   

   

   

   


   
    

       (15) 

We combine the equations (11) and (15) to obtain the following: 

2 3 2 3 1 1 1 1 1 1 1

1 2 2 2 2 2 2 2 2

2 2 4 4 2 2

1 1 1 1 1 1 2 2 3 3 3 3 3

sgn( )

sgn( )

(| | | |) ( ) ( ) ( ) sgn( )

                                                                          

z z y y v S K S

v S K S

a z y b z y c z y d z y v S

  

    

  

     

     

          

3 3                          K S






 

  (16) 

From Eq. (16), we obtain the required sliding mode control law as follows: 

1 2 3 2 3 1 1 1 1 1 1

2 1 2 2 2 2 2 2 2

2 2 4 4 2 2

3 1 1 1 1 1 1 2 2

3 3 3 3 3 3

sgn( )

sgn( )

(| | | |) ( ) ( ) ( )

        sgn( )

v z z y y S K S

v S K S

v a z y b z y c z y d z y

S K S

  

    

  

     


     


        
   

     (17) 

Theorem 1. The new chaotic systems (8) and (9) with line equilibrium points are globally and 

asymptotically synchronized for all initial conditions 
3(0), (0)Y Z R by the integral sliding mode 

controller (17), where the constants , , ,i i iK  ( 1,2,3)i  are all positive. 

Proof. We establish this theorem using Lyapunov stability theory (Khalil, 2001).  

First, we consider the quadratic and positive definite Lyapunov function defined by 

  2 2 2

1 2 3 1 2 3

1
( , , )

2
V S S S S S S         (18) 

We determine the time-derivative of V as follows: 

  
3 3

2

1 1

sgn( ) | |i i i i i i i i i

i i

V S S K S S K S 
 

             (19) 

From (19), we see that V is negative definite at all points of 
3.R  Using Lyapunov stability 

theory (Khalil, 2001), we conclude that ( ) 0iS t  as  t  for each 1,2,3.i   

Hence, it follows that ( ) 0i t   as t  for each 1,2,3.i   This completes the proof.     

For MATLAB simulations, we take ( , , , ) (6,0.5,2,0.1).a b c d   

We take the sliding constants as follows: 
1 2 3 0.2     and 

1 2 3 0.2.        

We take the gain constants as 20iK  for each 1,2,3.i   

We take the initial state of the new chaotic system (8) as 

  
1 2 3(0) 0.7,   (0) 3.4,   (0) 1.5y y y         (20) 

We also consider the initial state of the new chaotic system (9) as 

  
1 2 3(0) 2.1,   (0) 1.6,   (0) 4.8z z z         (21) 

Figures 5-8 shows the complete synchronization of the new chaotic systems (8) and (9).  
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Figure 5.  Complete synchronization of the states 

1 1,y z of the chaotic systems (8) and (9) 
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Figure 6.  Complete synchronization of the states 
2 2,y z of the chaotic systems (8) and (9) 

 
Figure 7.  Complete synchronization of the states 3 3,y z of the chaotic systems (8) and (9) 

 
Figure 8.  Time history of the synchronization errors between the chaotic systems (8) and (9) 
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4. Conclusion 

In this work, we briefed on a new 3-D chaotic system with a line of equilibrium points. We 

presented a dynamic analysis of the proposed chaotic system with five nonlinear terms such as 

Lyapunov exponents, Kaplan-Yorke dimension, etc. We exhibited that the new chaotic system with 

line equilibrium has the special property of multistability with two coexisting chaotic attractors. 

Using integral sliding mode control, we derived new control results for the complete 

synchronization of the new chaotic system with itself as leader-follower systems. 
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