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Abstract 

 

It has been widely studied how investors will allocate their assets to an investment when the return of assets is 

normally distributed. In this context usually, the problem of portfolio optimization is analyzed using mean-variance. 

When asset returns are not normally distributed, the mean-variance analysis may not be appropriate for selecting 

the optimum portfolio. This paper will examine the consequences of abnormalities in the process of allocating 

investment portfolio assets. Here will be shown how to adjust the mean-variance standard as a basic framework for 

asset allocation in cases where asset returns are not normally distributed. We will also discuss the application of the 

optimum strategies for this problem. Based on the results of literature studies, it can be concluded that the expected 

utility approximation involves averages, variances, skewness, and kurtosis, and can be extended to even higher 

moments. 
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1. Introduction 

How investors will allocate capital when income (return) is not normally distributed. Two approaches 

can be used to study this problem. The first approach is based on the direct maximization of utility 

expectations, under alternative assumptions of distribution for capital income (assets). The advantage of 

this approach is that it provides a real evaluation of the utility of expectations, also that the optimal 

portfolio is the actual resolution of the original problem (Ruppert, 2004). Furthermore that for most 

applications, numerical integration is difficult to use to maximize the expectation of the established 

utility. Consequently, most studies focus on a very small amount of income (two or three) to reduce 

computational burden (Denuit et al., 2005; Sukono et al., 2019). 
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The second approach is based on the optimization of a problem that does not require numerical 

integration. Typically, this approximation includes the moment of income-portfolio distribution. The 

main difficulty with this approach is how to define high moments that influence the utility of hope. 

Although various solutions have been introduced, the discussion in this paper focuses on Taylor's 

expansion of the utility function, which naturally produces utility expectations that depend on the high 

moment linearity of portfolio income (Batuparan, 2001). 

 

2. Direct Maximum Utility Hope 

In the direct maximization of this utility, it will cover optimization issues, case-variance cases, and 

numerical integration. 

2.1. Optimization Problem 

Suppose an investor allocates portfolio assets by maximizing the utility of hope for his assets in the 

next period 1tW . For example, there are n investor wealth that can be bought and sold, with income 

vectors )',...,( 1,1,11   tntt rrr . It is assumed that there are no costs for short-selling. Wealth at the 

beginning of the period is denoted by tW , assign the changes equal to one. The next period's wealth is 

given by ,)'( 11 tttt WrW     where is the fractional vector of wealth allocated to capital, with the 

limitation that the weight of the portfolio, at the time t , is one, that is 1' et , where e  is a vector 

)1,(n . Therefore, income on the portfolio is provided by (Jondeau et al., 2007; Denuit et al., 2005). 

 11, ')(   ttttp rr 
. 

It is assumed that the investor has a utility function U  that depends on the level of wealth in the 

coming period 1tW . Formally, optimal portfolio weights are obtained by maximizing the degree of 

utility utility 

 )]'([maxarg 1
}{

*
 ttt rUE 


 dengan 1' et               (1) 

The first-degree condition of the optimization problem is 
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where )( jU states the derivative jth of the utility function. Because the weight of the portfolio must 

amount to one, the first-degree requirement for investor problems reduces to the limit )1( n  
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alternatively, 
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where 1t  is the income vector from asset 1 to 1n  the excess asset n . In some cases, the 

optimization-level requirement (2) can help get a solution to the optimization problem. But in general, it 

is more appropriate to directly maximize the utility of hope, write back as 

     1,1,1111 ...)()(...)]([ tntttt drdrrfWUWUE     (3) 

where )( 1trf stated pdf combined income vectors in time (Beronilla et al., 2007). 

 

2.2. Case Variance Mean 

In some cases, the problem of double integration reduces average problems - mere variance. Consider 

for this case where the utility function is chosen exponential utility and where income is assumed to be 

normally distributed. The exponential utility function (or HOW, short for Constant Absolute Risk 

Version) is defined as 

 )exp()( 11   tt WWU            (4) 

where 0  is the absolute risk aversion coefficient. After all, the expectation income vector )1,(n , 

and the covariance matrix ),( nn  for risk assets are successively expressed with )',...,( 1,1,1  tnt  and 

1 t . Furthermore, if the random variable X  is normally distributed, then )exp()][exp( 2

2
1 baXE  . 

Therefore, problem (1) can be rewritten as 

 2
1,

2

2
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1,11 exp))]'([exp()]exp([   tptpttt rEWE   

where 11, '   tttp   is the expected gross income of the portfolio, and ttttp  1
2

1, '    is the 

variance of portfolio income. So maximizing )]([ 1tWUE  is equivalent to maximizing 

)( 2
1,2

1
1,   tptp   form, which is the average objective function - variance. On the other hand, some 

utility functions state directly the average size - the variance for variable income distribution. This is the 

case of the quadratic utility function: 2
210)( WaWaaWU  . The reason is simple that the expected 

utility function )]([ WUE  only includes the mean and variance of the distribution. Therefore, if (i) the 

income distribution for a portfolio is asymmetric, (ii) the investor's utility function is a degree higher than 

quadratic, and (iii) the average and variance are not completely determined by the distribution, then the 

third or higher moment and the coefficient mark must be considered (Denuit et al., 2005). 

2.3. Numerical Integration 

Tauchen and Hussey (1991) provide a numerical solution to equations such as (2.3) with quadratic. A 

quadratic rule for functions )(uh  where nRu  and pdf )(uf are a set of points }{ iu , Mi ,...,1 , and 

correspond with weights }{ iw  such that 
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The choice of abscissa iu  and weight iw , ni ,...,1  depends only on the pdf f , but not on the 

functions h  that are integrated. For a univariate quadratic, the Gauss rule is a discrete approximation to 

be f determined by the moment method using the moment beyond the above 12 M . 

The multiple-dimension quadrature is more in demand, because it has to calculate the integral 

dimension- n  
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An exception is a case where pdf f  can be factored into the multiplication of n  of one-dimensional 

pdf after the variable transformation has been carried out. A variate multiplication rule can be formed by 

combining a set of one-dimensional Gauss rules. A multiplication rule has j
M
j JN   1

 point, where 

jJ  is the number of points used along the axes jth. Lobatto rules are spherical for the reintegration of 

normal multivariate distributions that only require 12 1  MN  point so that the actual integration of all 

polynomials of five or more degrees (Jondeau et al., 2007). 

3. Settlement Approximation Based on Moment 

Solving general problems, which may not be simple, we may focus on the approximation of this 

problem based on high moments. 

3.1. Approximate Utility Utilities 

Since we have been primarily interested in measuring the effect of high moments on asset allocation, 

we are now approximating the utility of hope by expanding the Taylor series around wealth of hope. In 

this context, the utility function can be approximated by the following form, when the expansion is 

formed above the fourth degree (to alleviate, we ignore the time index) 
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where ][WEW   and   is the rest of Taylor’s. The expectation utility is simply approximated by 
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Where )(2 W , )(3 Ws , and )(4 Wk  respectively are quantities jWWE ][  for 4,...,1j . 

In the case of HOW utility functions (2), the approximation to utility expectations is given by 
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or, in terms of portfolio income moments 
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Where p , 
2
p , 

3
ps , and 

4
pk  respectively declare expected income, variance, skewness, and kurtosis 

of portfolio income. 

After some clear simplifications, FOC can be defined successively as 
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Optimal portfolio weights can be alternatively obtained by maximizing form (26) or by solving 

equation (7). Investigation of relations (7) shows that calculating this form would be simpler if the 

variance, skewness, and kurtosis of portfolio income and derivatives are known (Denuit et al., 2005). 

We can also pay attention to the rank of utility functions (or CRRA, for Constant Relative 

Riskversion), defined as 
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where   the size of the investor's relative risk aversion constant (CRRA). In contrast to the HOW utility, 

CRRA does not converge to an asymptote for an increase in wealth. 

In the case of the CRRA utility function, using the form (5), we obtain the following approximation 

for the utility of expectation 
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or, in portfolio income terms 
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The FOC for the CRRA function can be rewritten, after simplification 
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Optimal portfolio weights can be obtained alternatively by maximizing form (2.9) by solving equation 

(11). 
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3.2. Investor’s Preferences Based on Moments 

In the case of the CARA and CRRA utility functions, skewness weights and high moments in the 

expected utility are estimated depending on the risk-avoidance parameters. this is a preference for 

skewness and risk-avoidance for kurtosis. Therefore, moment jth weights are strongly related to 

derivatives jth of utility functions (Dowd, 2002; Jorion, 2002). 

Usually, risk aversion investors are assumed to have utility functions with the first and second 

derivatives as follows 

 WWU    ,0)()1(      (12) 

 WWU    ,0)()2(      (13) 

The first condition means that the tool has a positive marginal utility for wealth, for example, 

unpleasant concerning wealth. The second condition is that the decline in marginal utility with wealth 

affects risk avoidance. 

To investigate preferences concerning high moments, the following definitions are very useful. 

Definition 1. An investor is consistent in the direction of preference for the moment that has a utility 

function for which the derivative has the same sign whatsoever. The investor is loudly consistent in the 

direction of preference for the moment if the derivative of- has an exact inequality concerning zero. 

Then we have the following theorem 

Theorem 2 (Scott and Horvath, 1980). Investors with the positive marginal utility of wealth for all 

levels of wealth (condition (2.12)), risk aversion consistent at all levels of wealth (condition (2.13)), and 

hard consistency of preference moments, will have positive preferences for positive skewness, ie 

 WWU    ,0)()3( .     (14) 

Theorem 3 (Scott and Horvath, 1980). Consistent risk retention (condition (13)), hard consistency of 

moment preference and positive preference for positive skewness (condition (14)) imply a negative 

preference for kurtosis, i.e. 

WWU    ,0)()4( . 

In general, positive marginal utility assumptions, consistent risk avoidance together with hard 

consistency imply moment preference 

WWU n    ,0)()( if n  is odd, and 

WWU n    ,0)()( if n  is even. 

Finally, the assumption means that )(/)( )2()3( WUWU  is the decrease in W , so .  ,0)()4( WWU   

3.3. Portfolio Moment Calculation 

For a variable n system, the dimensions of the covariance matrix are ),( nn , but only 2/)1( nn  the 

elements are calculated. Using the same method, the co-skewness matrix has dimensions ),,( nnn , but 

only 6/)2)(1(  nnn elements are calculated. Finally, the co-kurtosis matrix has dimensions 

),,,( nnnn , but only 24/)3)(2)(1(  nnnn  elements are counted. For 5n , there will be 15 

different elements for the covariance matrix, 35 elements for the co-skewness matrix, and 70 elements 

for the co-kurtosis matrix. Define co-skewness and co-kurtosis between asset income as 
3/1)])()([( kkjjiiijk rrrEs  

, 
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and 
4/1)])()()([( llkkjjiiijkl rrrrEk  

. 

As recommended by Athayde and Flores (2004), we transform the co-skewness matrix into a matrix, 

simple by partitioning each layer and once, in the same order, sideways. For example, in the case of 

assets, it produces a co-skewness matrix 
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Where jks1  is the short notation for the matrix ),( nn , 3,2,1,1 )( kjjks . This notation is the development of the 

covariance matrix, denoted by 2M . In the same way, the co-kurtosis matrix is 

 
3,2,1,3332311312114 ...




lkklklklklklkl kkkkkkM . 

We can now define portfolio moments in various ways. To provide a portfolio weight vector  , 

income unconditional expectations, variance, skewness, and kurtosis of a portfolio, respectively 

 'p , 

 2
2 'Mp 
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)(' 3
3   Ms p , 

)(' 4
4   Mk p , 

which symbolizes Kronecker's multiplication. The derivative moment of a portfolio against is very easily calculated 

(Denuit et al., 2005; Clientbaum et al., 1988) 
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In general, if ,...),,( 222
pppp ksm   we state the central portfolio moment vector, we will find 
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 and  1
. Next, it will be 
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obtained )(/,  i
i

i
ip iMm  . 

3.4. Optimal Portfolio Allocation 

Now how to complete the allocation of assets, when high moments are included in the problem of 

optimization. Athayde and Flores (2004) make a quasi-analytic solution to the problem of efficient 

portfolios by defining moments as tensors and then solving optimization problems. The solution, using 

non-linear optimization methods. 

Equation (2.11) can be rewritten as 

 
0)]()[()]()[(])[()( 433221   MMMr f  (15) 

Where 1 , 2 , and 3  are nonlinear functions of  . As many n of these equations can be easily 

solved numerically, using a standard optimization package (Denuit et al., 2005; Mood et al., 1963). 

4. Conclusion 

In optimizing portfolio asset allocation where returns are non-normal distributed, it can be done by 

direct maximization of utility expectations, and approximation of settlement based on moments. The 

direct maximization approach to expectation utility assumes that investors have a utility function that 

depends on the wealth of expectations for the coming period, and in certain cases, exponential or 

quadratic utility functions are often used. Approximate settlement based on the moment, measuring the 

effect of the high moment on asset allocation is used to estimate the utility of expectations by expanding 

the Taylor series around the wealth of expectations. The expected utility of this expectation will involve 

averages, variances, skewness, and kurtosis, and can be extended to even higher moments. 
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