Optimization of Investment Portfolio Mean-Variance Model Using Genetic Algorithm

Raynita Syahla, Dwi Susanti, Herlina Napitupulu

Abstract


The optimization of investment portfolio is aimed at finding the optimal combination of each stock with the goal of maximizing returns while minimizing risk through diversification. However, the question is how much funds should be invested to achieve the minimum risk. One of the approaches that has proven effective in building an optimal investment portfolio is the Mean-Variance model. The aim of this research is to determine the weights of the optimal portfolio components with the minimum risk. The data used consists of stocks included in the LQ45 index for the period from February 2020 to July 2021. Based on the research results, there are five stocks that form the optimal portfolio, namely ADRO, AKRA, BBCA, CPIN, and EXCL. The allocated weights for each stock are ADRO 9.896%, AKRA 32.049%, BBCA 30.749%, CPIN 13.949%, and EXCL 13.357%. The optimal portfolio generated by the Genetic Algorithm method has a risk of 0.000472 and an expected return of 0.000492.


Keywords


Mean-Variance, Lagrange Multiplier, Genetic Algorithm.

Full Text:

PDF

References


Darmadji, T., & Fakhruddin, H. (2006). Pasar Modal di Indonesia. Jakarta: Salemba Empat.

Fanggidae, A., & Lado, F. R. (2015). Algoritma Genetika dan Penerapannya. Yogyakarta: Teknosain.

Halim, N. A., & Yulianti, A. (2020). Markowitz Model Investment Portfolio Optimization: a Review Theory. International Journal of Research in Community Service , 14-18.

Hartono, N. P., & Rohaeni, O. (2021). Menentukan Portofolio Optimal Menggunakan Model Markowitz. Jurnal Riset Matematika, 57-64.

Hasani, M. N. (2022). Analisis Cryptocurrency Sebagai Alat Alternatif dalam Berinvestasi di Indonesia pada Mata Uang Digital Bitcoin. Jurnal Ilmiah Ekonomi Bisnis, 329-344.

Haupt, R. L., & Haupt, S. E. (2004). Practical Genetic Algorithm, 2nd edition. New Jersey: John Willey and Sons.

Sandy, I. A., Ichsan, M. H., & Setyawan, G. E. (2018). Analisis Performa Jaringan Sensor Nirkabel Berdasarkan Penentuan Lokasi Node yang Telah Diimplementasikan dengan Algoritma Genetika. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 3421-3431.

Satriyanto. (2009). Algoritma Genetika. Jakarta: Duta Ilmu Press.

Setiawan, E. P., & Rosadi, D. (2019). Model Pengoptimuman Portofolio Mean-Variance dan Perkembangan Praktisnya. Jurnal Optimasi Sistem Industri, 25-36.

Widodo, A. W., & Mahmudy, W. F. (2010). Penerapan Algoritma Genetika Pada Sistem Rekomendasi Wisata Kuliner. Kursor, vol. 5 no. 4. 205-211.

Yunita, I. (2018). Markowitz Model dalam Pembentukan Portofolio Optimal (Studi Kasus Pada Jakarta Islamic Index). Jurnal Manajemen Indonesia, Vol. 18 No. 1.

Zainuddin, F. A., & Samad, M. F. (2020). A Review of Crossover Methods and Problem Representation of Genetic Algorithm in Recent Engineering Applications. International Journal of Advanced Science and Technology , 759-769.




DOI: https://doi.org/10.46336/ijbesd.v5i2.654

Refbacks

  • There are currently no refbacks.


Add comment

Copyright (c) 2024 International Journal of Business, Economics, and Social Development

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Published By: 

IJBESD: Jalan Riung Ampuh No. 3, Riung Bandung, Kota Bandung 40295, Jawa Barat, Indonesia


IJBESD Indexed By:

width=width=width= width= width= width= 

 

Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.