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Abstract 

Based on data from the Central Bureau of Statistics of the Republic of Indonesia, the average length of schooling of Indonesian 

citizens is continuously increasing every year. This increase is predicted to continue in the future. However, it has yet to be 

discovered how the increasing rate in the average length of schooling will occur. Therefore, this study aims to analyze the 

increasing rate of the average length of schooling of Indonesian citizens in the future. The data used is the average length of 

schooling of Indonesian citizens from 2010 to 2021. The analytical method used is the discrete-time Markov chain. Furthermore, 

the states representing the increasing rate in the average length of schooling used are divided into two: the increasing rate in the 

average length of schooling that is smaller and larger than the average. Based on the analysis results, the probability that the 

increasing rate in Indonesian citizens' average length of schooling will be less than the average in the future is 0.4. In contrast, the 

probability that the increasing rate in Indonesian citizens' average length of schooling will be greater than the average in the 

future is 0.6. It indicates that Indonesian citizens will have a high education level in the future. The results can be used as the 

future education state projection of Indonesian citizens so that it can be accompanied by empowerment. 
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1. Introduction 

The Ministry of Education and Culture, Research and Technology of the Republic of Indonesia continues to make 

policies to increase the average length of schooling of Indonesian citizens. It is conducted to increase the human 

development index (HDI) in the education sector (Berliyanto and Santoso, 2018). The policies implemented include 

reducing the dropout rate, increasing access to and quality of education, increasing the competitiveness of higher 

education, and improving the quality of educators and education staff (Deffinika et al., 2022). 

Visualization of the average length of schooling of Indonesian citizens from 2010 to 2021 based on data from the 

Central Bureau of Statistics of the Republic of Indonesia can be seen in Figure 1. Figure 1 shows that the average 

length of schooling of Indonesian citizens is continuously increasing. This increase is even predicted to continue in 

the future (Zulfa and Meutia, 2018). This increase is the policy results that have been implemented. In addition, the 

increasing rate in the average length of schooling for Indonesian citizens from 2010 to 2021 is also relatively high. 

Based on historical data, the average increasing rate in the average length of schooling from 2010 to 2021 is 0.0982. 

The visualization of the increasing rate in the average length of schooling from 2010 to 2021 is presented in Figure 2. 

Figure 2 shows the increasing rate in the average length of schooling is around the average line. It indicates that the 

increasing rate in the average length of schooling is stationary. In addition, most increasing rates are above the 

average. It is good news for the Indonesian government. 
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Figure 1: The Average Length of Schooling of Indonesian Citizens from 2010 to 2021 

 

 
 

Figure 2: The Increasing Rate in the Average Length of Schooling of Indonesian Citizens from 2010 to 2021 

 
Several articles have examined the average length of schooling in Indonesia. Zulfa and Meutia (2018) analyze the 

effect of economic growth and HDI on West Java Province, Indonesia. Kustandi et al. (2021) applied the K-Means 
clustering method to classify Indonesia's average schooling length. Then, Juned and Yusra (2021) used the fuzzy C-
means clustering method to classify HDI in Aceh Province, Indonesia. Finally, Saepudin (2018) examines the 
development of the electrification ratio with HDI in West Java Province, Indonesia. 

Although it is predicted that the average length of schooling of Indonesian citizens will continue to increase in the 
future, the increasing rate of it has yet to be discovered. Based on the previous articles and presented introduction, this 
is the first article to study this. Therefore, this study aims to analyze the increasing rate in the average length of 
schooling of Indonesian citizens in the future. The method used to analyze this is the discrete-time Markov chain. The 
discrete-time Markov chain is used since this method can describe the probability of a situation occurring in the 
future. The states of increasing rate in the average length of schooling used for Markov chain analysis are divided into 
two: the increasing rate in the average length of schooling that is smaller and larger than the average. This research is 
expected to provide an overview for the Indonesian government in projecting the average length of schooling for its 
population so that they can prepare policies regarding it precisely. 
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2. Materials and Methods 

2.1. Materials 

The data used in this study is data on the average length of schooling for Indonesian citizens from 2010 to 2021, 
accessed on September 20, 2022. This data can be accessed openly on the Central Bureau of Statistics of the Republic 
of Indonesia website as follows: https://www.bps.go.id. 

2.2. Methods 

In this section, an explanation of the supporting theory is briefly explained. The supporting theories are as follows: 
discrete-time Markov chain analysis, transition probability matrix, transition probability diagrams, irreducible Markov 
chains, recurrent Markov chains, aperiodic Markov chains, positive recurrent Markov chains, Ergodic Markov chains, 
stationary distributions, and the Chapman-Kolmogorov equation. 

2.2.1. The Discrete-Time Markov Chain Analysis 

Markov chain analysis was introduced by a Russian mathematician named Andrei A. Markov in 1906. Via the 

Markov chain, information about the probability of a situation occurring in the future can be known (Susilo et al., 

2019). This information can be used in decision-making (Duys and Headrick, 2004). 

Based on the spaces of state and parameter, Markov chains are divided into two, namely discrete and continuous 

time Markov chains. A discrete-time Markov chain is a Markov chain with discrete spaces of state and parameter, 

while a continuous-time Markov chain is a Markov chain with continuous spaces of state and parameter. The discrete-

time Markov chain is a particular form of a stochastic process {            } with a state space   {        }. 
The probability of the transition from      to       , denoted by    , is determined by the following equation: 

 

     {       |                             }   {      |    }  (1) 

 

for all  ,  ,     ,   , …,      . In detail,     in equation (1) is referred to as the one-step transition probability from 

the state   to   (Osaki, 1972, p. 105). A verbal explanation of Equation (1) is given to make it easier to understand. 

The probability that state   will occur at time       is only affected by state   at time  . In other words, the 

probability that event   at time       is affected only by one previous step (Ogunnaike et al., 2018). 

2.2.2. Transition Probability Matrix 

The probability of each state transition can be expressed as a matrix. This matrix is called the transition probability 

matrix. The one-step transition probability matrix of the  stochastic process    is expressed as follows (Ross, 1996, p. 

163): 

 

  [

          

          

     
          

]  (2) 

 

where         and ∑      
 
   . In general,  -steps transition matrix can be expressed as a one-step transition 

matrix raised to the power of  . Mathematically, it can be written as follows (Ross, 1996, p. 168): 

 

     [   
   

]      (3) 

 

where      represents  -steps transition matrix. 

2.2.3. Transition Probability Diagrams 

The probability of each state transition can be expressed in graph form. Vertices represent the state space, and each 

directed arrow weight represents each transition probability. This graph is called a probability transition diagram. 

Suppose that there are two state spaces of the Markov chain   , namely   {   }. The transition probability diagram 

of the    stochastic process can be seen in Figure 3. 
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Figure 3: Transition 

Probability Diagrams of Markov Chain    with State Space   {   } 

Figure 1 shows that the state space   {   } is represented as a vertex, while the transition probability between 
states is described as the weight of a directional arrow. This transition probability diagram can facilitate the Markov 
chain analysis process (Tsai et al., 2014). 

2.2.4. Irreducible Markov Chain 

State   can be reached from state  , denoted by    , if there is a positive integer   so that the transition probability 

 -step from state   to state   is positive,    
    (Ross, 1996, p. 168). In general, if state   can be reached from state  , 

and state   can be reached from state  , then state   and state   are called two states that communicate with each other. 

It is denoted as    . If all states in a Markov chain communicate with each other, then the Markov chain is called an 

irreducible Markov chain. 

2.2.5. Recurrent Markov Chain 

A state in a Markov chain is called a recurrent state if it returns to its initial state when it transitions to any state. 

Suppose the Markov chain    has a state space   {     }. An illustration of the recurrent state in the    Markov 

chain is given in Figure 4. 

 

 

 

 

 

 

 

 

 

 

   

Figure 4: Recurrent State Illustration in Markov Chain 

Based on Figure 2, if states 0, 1, or 2 transit anywhere, these states will eventually reach their original state. It 

shows that states 0, 1, and 2 are recurrent states. It is not recurrent if a state cannot reach its original state after making 

a transition. This situation is called a transient state. If every state in a Markov chain is recurrent, then the Markov 

chain is called a recurrent Markov chain (Osaki, 1972, p. 114). 

2.2.6. Aperiodic Markov Chain 

A state in a Markov chain is called aperiodic if all the arrows pointing to that state are multiples of one in length. 

Mathematically, state   is called aperiodic if the following equation applies (Ross, 1996, p. 169): 

 

        {   |   
   }     (4) 

 

where      represents of the period of state  , and     {   |   
   } represents greet common divisor of transition 

probability of state   to itself in  -steps,    . If every state in the Markov chain is aperiodic, then the Markov chain 

is called an aperiodic Markov chain (Osaki, 1972, p. 115). 

2.2.7. Positive Recurrent Markov Chain 

A state is said to be positive recurrent if the average time it takes for the state to reach itself the first time has a 

finite value. Mathematically, state   is called positive recurrent if the following conditions apply (Ross, 1996, p. 173): 
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   ∑    
 

 

   

    (5) 

 

where    represents the average time state   takes to reach itself the first time, and    
  represents the probability that 

state   reaches itself for the first time in  -steps. If every condition in a Markov chain is positive recurrent, then the 

Markov chain is called a positive recurrent Markov chain (Osaki, 1972: p. 118). 

2.2.8. Ergodic Markov Chain 

To determine the long-run probability of a state in a Markov chain, the condition that must be met is that the 

Markov chain must be ergodic. A Markov chain is said to be ergodic if it is irreducible, aperiodic, and positive 

recurrent (Ross, 1996, p. 177).  

2.2.9. The Stationary Distribution 

The probability of a long-term transition from a state is the probability that that state will occur in the long term. 

The set of long-run probabilities for each state is called the stationary distribution of an ergodic Markov chain. 

Mathematically, the long-term probability of state   from the Markov chain    with state space   {          } is 

expressed as follows (Ross, 1996, p. 175): 

 

      
   

   
               (6) 

 

where    represents the long-term probability of state  .   {               } is called as stationary distribution 

of an ergodic Markov chain   .   

2.2.10. Chapman-Kolmogorov Equation 

The Chapman-Kolmogorov equation was introduced by British mathematician Sydney Chapman and Russian 

mathematician Andrey Kolmogorov. The Chapman-Kolmogorov equation calculates the probability of the  -step 

transition for each state in the Markov chain. Mathematically, the Chapman-Kolmogorov equation can be expressed 

as follows (Ross, 1996, p. 167): 

 

   
   

 ∑    
   

   
     

 

   

  (7) 

where    
   

 represents the probability of the  -step transition from state   to state  ,    
   

 represents the probability of 

the  -step transition from state   to state  ,    
     

 represents the probability of the      -step transition from state   

to state  , and      If equation (7) is expressed in matrix form, then the following equation is obtained (Ross, 1996, 

p. 168): 

 

                           (8) 

The stationary distribution   {              } of the ergodic Markov chain    with the state space 
  {         } can be obtained by multiplying the transition probability matrices as much as possible until the 

convergence of the probability values for each column is obtained. 

3. Results and Discussion 

The process of Markov chain analysis on the average length of schooling data for Indonesian citizens is as follows: 

(a) calculating the increasing rate in the average length of schooling each year from 2010 to 2021, 

(b) descriptive statistical analysis of the data on the increasing rate in the average length of schooling, 

(c) determination of the state of the Markov chain, 

(d) determination of the matrix and diagram of the transition probability of the Markov chain, 

(e) checking ergodicity of the Markov chain, and 

(f) determining the stationary distribution or long-term probability of each state of the Markov chain using the 

Chapman-Kolmogorov equation. 
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3.1. Calculation of the Increasing Rate in the Average Length of Schooling in Every Year 

The increasing rate in the average length of schooling in a year is the difference between the average length of 
schooling that year and the previous year. The calculating result of the increasing rate in the average length of 
schooling are given in Table 1. 
 

Table 1: The Calculating Result of the Increasing Rate in the Average Length of Schooling 
Year the Increasing Rate in the Average Length of Schooling (Per Year) 
2011 0.06 
2012 0.07 
2013 0.02 
2014 0.12 
2015 0.11 
2016 0.11 
2017 0.15 
2018 0.07 
2019 0.17 
2020 0.14 
2021 0.06 

 
Table 1 shows the most significant increase rate in the average length of schooling occurred in 2017, which is 0.15 

per year. Then, the smallest increase rate in the average length of schooling occurred in 2011 and 2021, which is 0.06 
per year. The descriptive statistics are given in Table 2 to find out more about the increasing rate in the average length 
of schooling in Table 1. 
 

Table 2: The Descriptive Statistics of the Increasing Rate in the Average Length of Schooling 
Descriptive Statistics Value 

Average 0.0982 
Variance 0.0021 

Deviation Standard 0.0458 

 
Table 2 shows that the average increasing rate in the average length of schooling is 0.0982 per year. Meanwhile, 

the average deviation from the increasing rate in the average length of schooling is 0.0458. 
 

3.2. Determination of the States of the Markov Chain 
The states used in the Markov chain analysis are the increasing rate in the average length of schooling, which is 

smaller and larger than the average. For example, the state with the increasing rate in the average length of schooling, 
which is smaller than the average, is declared state 0, and the other is state 1. The classification of the increasing rate 
in the average length of schooling based on 0 and 1 states is given in Table 3. 
 

Table 3: The Classification of The Increasing Rate in the Average Length of Schooling based on 0 and 1 States 
Year The Increasing Rate in the Average Length of Schooling (Per Year) State 
2011 0.06 0 
2012 0.07 0 
2013 0.02 0 
2014 0.12 1 
2015 0.11 1 
2016 0.11 1 
2017 0.15 1 
2018 0.07 0 
2019 0.17 1 
2020 0.14 1 
2021 0.06 0 

 
Table 3 shows that the transition frequency from state 0 to state 0 is two. Then, the transition frequency from state 

0 to state 1 is one. Then, the transition frequency from state 1 to state 0 is two. Finally, the transition frequency from 
state 1 to state 1 is four.  

 
3.3. Determination of the Matrix and Diagram of the Transition Probability of the Markov Chain 

The transition frequency of all states to the other states is needed to determine the matrix and the transition 
probabilities. Regarding Table 3, the transition frequencies between states 0 and 1 are given in Table 4. 
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Table 4: The Transition Frequency of All States to the Other States 

Transition between States Frequency 
Transition from State 0 to State 0 2 
Transition from State 0 to State 1 2 
Transition from State 1 to State 0 2 
Transition from State 1 to State 1 4 

 
After the transition frequencies between states are obtained in Table 4, the transition probabilities between states 

are determined. The transition probability between states is determined based on the division between the transition 
frequency from one state to a particular state and the transition frequency from one state to each state. The transition 
probabilities between these states are given in Table 5. 
 
 

Table 5: The Transition Probabilities between States 
The Transition Probabilities between States Value 

    
 

 
 

    
 

 
 

    
 

 
 

    
 

 
 

 
Table 5 shows that the most significant transition probability is the transition probability from state 1 to state 1. In 

contrast, the most negligible transition probability is the transition probability from state 0 to state 0 and from state 0 
to state 1. Note that the sum of     and     is one, and the sum of     and     is also one. Via equation (2), the 
transition probability matrix in this study can be expressed in the following equation: 
 

  [

 

 

 

 
 

 

 

 

]  (9) 

 
Visualization of the transition probability diagram is given in Figure 5. 
  
 
 
 
 
 
 
 

Figure 5: The Transition 

Probability Diagram in This Study 
 
3.4. Checking the Ergodicity of the Markov Chain 

3.4.1. Checking the Irreducibility of the Markov Chain 

Since there is     so that     and     are positive, 0 and 1 states are said to communicate with each other. Since 

each state communicates with the other, the Markov chain in this study is said to be irreducible.. 

3.4.2. Checking the Aperiodicity of the Markov Chain 

Based on equation (4), since there are            such that    
  and    

  are positive, the period of states 0 and 1, 

denoted by      and     , is 1. Then, states 0 and 1 are aperiodic. Since every state is aperiodic, the Markov chain in 

this study is said to be aperiodic. 
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3.4.3. Checking the Recurrent Positiveness of the Markov Chain 

The average recurrent times of states 0 and 1, which are calculated by equation (5), are respectively as follows: 

 

   ∑    
 

 

   

  (
 

 
)   (

 

 
) (

 

 
)   (

 

 
) (

 

 
) (

 

 
)   (

 

 
) (

 

 
)
 

(
 

 
)    

 

 
 

 

 
∑  (

 

 
)
    

   

 
 

 
 (10) 

 

and 

 

   ∑    
 

 

   

  (
 

 
)   (

 

 
) (

 

 
)   (

 

 
) (

 

 
)
 

  (
 

 
) (

 

 
)
 

   
 

 
 

 

 
∑  (

 

 
)
    

   

 
 

 
  (11) 

 

Since the average recurrent time for states 0 and 1 is finite, states 0 and 1 are said to be positively recurrent. Since 

every state is positive recurrent, the Markov chain in this study is also said to be positive recurrent . 

3.4.4. Checking the Ergodicity 

Since the Markov chain in this study is irreducible, aperiodic, and positively recurrent, it is said to be ergodic. 

 
3.5. Determining the Stationary Distribution 

Determination of the stationary distribution of the Markov chain in this study is carried out using equation (8). By 
multiplying the transition probability matrix   as much as possible, for example, the 500-step transition probability 
matrix, which is also a stationary distribution of the Markov chain in this study, is as follows: 
 

       [
      
      

]  (12) 

 
In other words, the stationary distribution of the Markov chain in this study is as follows: 
 

  {              }  (13) 

 

Verbally, the stationary distribution in Equation (13) shows that the long-term probability that the increasing rate 

in the average length of schooling will be less than the average is          In comparison, the long-term 

probability that the increasing rate in the average length of schooling will be greater than the average is         . 

It can happen with the assumption that Indonesia's condition is stable. Another meaning of this is that the education 

level of Indonesian citizens in the future will be even higher.  

4. Conclussion 

This research examines how fast the increasing rate of Indonesian citizens' average length of schooling will be. 
This research needs to be conducted for the future education state projection of Indonesian citizens. This projection 
will later be used as a basis for preparation for issuing supporting policies. 

The experimental data in this study is the average length of schooling of Indonesian citizens from 2010 to 2021. 
The data is analyzed using a discrete-time Markov chain. Furthermore, two states are applied, namely, the increasing 
rate in the average length of schooling, which is smaller and larger than the average. 

The analysis results show that the probability that the increasing rate in Indonesian citizens' average length of 
schooling will be less than the average in the future is 0.4. In contrast, the probability that the increasing rate in 
Indonesian citizens' average length of schooling will be greater than the average in the future is 0.6. It indicates that 
Indonesian citizens will have a high level of education in the future. These results can be used as a future education 
state projection of Indonesian citizens so that a high level of public education can be accompanied by empowerment. 
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