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Abstract  

Stock mutual funds gained popularity among the public as an investment alternative due to the convenience they offer, especially 

for beginner investors who have limited time and investment knowledge. Compared to money market and bond mutual funds, 

these mutual funds offer higher potential returns but also come with higher risks due to value fluctuations, so forecasting stock 

mutual fund prices is essential to minimize losses. Since stock mutual fund prices is time series data, this research employs two 

forecasting models such as Autoregressive Integrated Moving Average (ARIMA) and Neural Network Autoregressive (NNAR). 

The objective of this research is to determine the best-performing model between ARIMA and NNAR, and compare their 

forecasting accuracy using the Mean Absolute Percentage Error (MAPE). The data used consists of daily closing prices of stock 

mutual funds from March 1, 2022, to March 31, 2025, with the criteria that the selected issuers have been operating for more than 

five years. The results of this research show that the best ARIMA and NNAR for the RNCN are ARIMA([1],1,0) and 

NNAR(2,2); for TRAM are ARIMA(0,1,[1]) and NNAR(4,1); for SCHRP are ARIMA(0,1,[1]) and NNAR(4,2); for MICB are 

ARIMA([1],1,0) and NNAR(2,2); and for BNPP are ARIMA([1],1,0) and NNAR(5,1). The MAPE values in the same order are 

6.83% and 5.49%; 6.53% and 5.75%; 8.57% and 7.10%; 8.39% and 8.75%; 8.51% and 7.30%. Based on the comparison, NNAR 

outperformed ARIMA in four out of five mutual funds, with lower MAPE values and also marked by the ARIMA model tend to 

produce stable or unchanging values over the long term. The results of this research are expected to assist investors in considering 

by choosing NNAR model, both in the short and long term, to obtain better stock mutual fund price forecasts. 
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1. Introduction  

The capital market plays a vital role in national development as it facilitates funding for issuers, like government 
and corporations, while also serves as an investment platform for the public. Stocks are the most popular financial 
instruments, offering high return potential, but investors have to manage their portfolios independently. For investors 
with limited time or investment knowledge, mutual funds offer more accessible alternative through professional fund 
managers. As of 2024, Indonesia has 14.03 million mutual fund investors and 6.38 million stock investors, indicating 
a growing preference for mutual funds over stocks. Among mutual fund types, stock mutual funds offer higher returns, 
but also comes with higher risk. Price fluctuation in stock mutual fund prices can affect investor gain or losses, 
making stock mutual fund prices forecasting essential to avoid potential losses. 

Stock mutual fund prices are considered time series data, making them suitable for forecasting using the 
Autoregressive Integrated Moving Average (ARIMA) model, which effective for linear and stationary data, or data 
that can be transformed to stationarity through differencing. However, ARIMA may struggle to capture complex non-
linear patterns. On the other hand, machine learning based forecasting model such as Neural Network Autoregressive 
(NNAR) model is better suited to handle non-linearities in time series data. 

Several studies have applied ARIMA and NNAR in various forecasting context. Bhardwaj et al. (2021) compared 
NNAR with classical forecasting models like Moving Average (MA), Double Exponential Smoothing Brown, and 
Holt’s method for predict rice production in India, shows that NNAR yielded more accurate results based on RMSE 
and MAE values. Prihandi et al. (2024) compared ARIMA and Long Short-Term Memory (LSTM) models for 
predicting chili prices in Bali. Another research by Melina et al. (2024) compared ARIMA and NNAR for forecasting 
gold prices and found that the NNAR(1,10) model outperformed ARIMA based on RMSE and MAE values. 
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Based on previous research, the purpose of this research is to analyze and compare the ARIMA and NNAR models 

for forecasting stock mutual fund prices. The results of this research are expected to help investors, particularly 
beginners with limited time and investment knowledge, make informed decisions by identifying the more accurate 
forecasting model for stock mutual funds. 

2. Literature Review  

2.1. Investment 

Investment refers to the activity of allocating capital by investors through financial instruments with the aim of 
generating future returns. The parties engaging in capital placement are referred to as investors, also entities that 
require funding are known as issuers. In Indonesia, the institution that facilitates the interaction between investors and 
issuers is the Indonesia Stock Exchange (IDX). One of the financial instruments used in investment is mutual funds, 
which serve to collect funds from investors. These funds are then diversified by an investment manager and held by a 
custodian bank. According to Bursa Efek Indonesia (2022), among the various types of mutual funds, stock mutual 
funds carry the highest level of risk, but also offer the potential for greater returns. 

2.2. Autoregressive Integrated Moving Average (ARIMA) 

According to Box & Jenkins (1977), the ARMA model combines two components, such as Autoregressive (AR) 
and Moving Average (MA) model, and denoted as ARMA(   ). The AR model assumes that the current value of the 
series is determined by a linear combination of its past values, while MA model assumes that the current value of a 
time series is determined by a linear combination of past residuals. The ARMA model is used for stationary time 
series data, whereas the ARIMA model is used for non-stationary time series data, so this model requires the data to 
be transformed into a stationary through a differencing process. In addition to stationarity, the ARIMA model also 
assumes that the data follows a white noise process (Wei et al., 2006). The ARIMA model consists of 3 components, 
where   is the order of the AR model,   is the order of the MA model, and   is the order of differencing and denoted 
as ARIMA(     ). The general form of the ARIMA(     ) is defined as (Box & Jenkins, 1977):  

 ( )(   )       ( )   (1) 

were, 
 ( ) : AR operator, where  ( )           

        , 
 ( )  : MA operator, where  ( )           

       
 , 

  : backshift operator, 
   : observation at time  , 
  : intercept, 
   : residual at time  , 
  : AR order, 
  : differencing order, 
  : MA order. 

2.2.1. Stationary Test 

Stationarity is a fundamental property in time series analysis, as it ensures that the mean and variance of the data 
remain constant over time (Tong & Chatfield, 1996). Time series models such as ARIMA require stationary data to 
produce reliable forecasts (Wei et al., 2006). The Augmented Dickey Fuller (ADF) test is used to assess whether a 
time series is stationary in its mean by applying significant level of     , with the following hypotheses criteria: 

   :     (data is not stationary) 
   :     (data is stationary). 

The test statistic used is: 

  
 ̂

  ( ̂)
  (2) 

where   ( ̂) is the standard error of  . The test criteria are to reject null hypothesis if p-value < 0.05. 
According to Wei et al. (2006) and Anjuita et al. (2023), the Box-Cox transformation can be applied to stabilize the 

variance of the series. The Box-Cox transformation is defined as: 

 (  )  
  

   

 
   (3) 

where    is the observation at the time   and   is a parameter estimated from the data. If   is equal to 1, the data is 
already stationary in variance. Otherwise, tranformation is required to achieve approximate variance stationary.  
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2.2.2. ARIMA Model Identification 

According to Box & Jenkins (1977), this identification process uses visualization of the Autocorrelation Function 
(ACF) and the Partial Autocorrelation Function (PACF) plots. The Autocorrelation Function (ACF) measures the 
correlation between observations in a time series at different lags and defined as: 

 ̂  
 ̂ 

 ̂ 
 

∑ (    ̅) 
     (      ̅)

∑ (    ̅) 
   

  (4) 

where  ̂  is the estimated ACF at lag  ,  ̂  is the estimated autocovariance at lag  , and  ̅ is the mean of observations. 

The Partial Autocorrelation Function (PACF) measures the correlation between    and      after removing the 
linear influence of intermediate lags                    and defined as: 

 ̂   
 ̂  ∑  ̂      ̂   

   
   

  ∑  ̂      ̂ 
   
   

 (5) 

where  ̂   is the estimated PACF at lag  , and  ̂      is the estimated PACF at lag     and lag  . 

2.2.3. Parameter Estimation 

Maximum Likelihood Estimation (MLE) is the method used for parameter estimation in ARIMA that maximize the 
likelihood function of the observed data. The likelihood function of the ARMA(   ) model is defined as: 

 (          
    )  (    

 ) 
 
    ( 

 

   
 
∑  

 

 

   

) (6) 

where         are the parameters used in the model. 

2.2.4. Parameter Significance Test 

According to Anjuita et al. (2023), a parameter is considered significant if it has a meaningful contribution to the 
model’s predictive accuracy. The test hypotheses used are: 

   :      or      (the model parameter is not significant) 

   :      or      (the model parameter is significant). 

The test statistic used is: 

  
 ̂ 

  ( ̂ )
  or   

 ̂ 

  ( ̂ )
 (7) 

were, 

 ̂  : is the estimated order  , 

 ̂  : is the estimated order  , 

 : is the standard error of  ̂ , 

 : is the standard error of  ̂ . 

The test criteria is to reject    if | |    

 
     

 or p-value < 0.05. 

2.2.5. Selecting Best ARIMA Model  

According to Wei et al. (2006), the selection of the best ARIMA model is based on the Akaike’s Information 
Criterion (AIC). A lower AIC value indicates a better model fit. The AIC is calculated using the following formula: 

   ( )        ( ) (8) 

where   is the number of parameters in the model and   is the likelihood function of the model.  

2.2.6. Diagnostic Test 

Model diagnostics are conducted using residual analysis to assess the absence of autocorrelation and to verify the 
normality of the residuals. The Ljung-Box test is used to examine whether the residuals from the fitted ARIMA model 
exhibit white noise properties and to check the normality assumption of the residuals, a Quantile-Quantile (Q-Q) plot 
serves as a useful visual aid to assess the extent to which the residuals align with a normal distribution (Gedeck et al., 
2020). The hypotheses for the Ljung-Box test are as follows (Tsay, 2005): 

   :           (residuals are white noise) 
   :         *     + (residuals are not white noise). 

 
 

𝑆𝐸(𝜃𝑞) 

𝑆𝐸(𝜙̂𝑝) 
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The test statistic used is: 

   (   )∑
 ̂ 

 

   

 

   

 (9) 

where   is the number of observations,   is the number of lags used,  ̂  is the estimated ACF at lag  . The test criteria 
are to reject    if    (       )

  or p-value <  .                                    

2.3. Neural Network Autoregressive (NNAR) 

A Neural Network (NN) is a computational system designed to mimic the workings of the human brain’s neural 
structure, especially in capturing non-linear relationships in data (Hyndman & Athanasopoulos, 2018). The NN 
consists of three main layers such as input layer to receive the input data, hidden layer to processes inputs through 
weighted connections to produce non-linear outputs, and output layer to generates the final forecasting. 

 

Figure 1: Neural network architecture (Fausett, 1994) 
 
The Neural Network Autoregressive (NNAR) model is a specific application of NN in time series analysis, using 

 -lagged values of the time series                   as inputs (As’ad et al., 2020; Hyndman & Athanasopoulos, 2018). The 
NNAR model typically adopts a feed-forward architecture, meaning information flows in one direction from the input 
layer to the output layer, with no feedback loops (Shmueli et al., 2018) and trained by backpropagation algorithm to 
estimate weights and biases (Fausett, 1994). The model is denoted by NNAR(   ), where   is the number of input 
nodes (determined using the PACF plot) and   is the number of hidden nodes (determined by trial and error) (Maier et 
al., 2023). This structure allows the NNAR model to effectively capture both linear and non-linear dependencies in 
the time series data. 

2.3.1. Activation Function 

The activation function is a crucial component of a neural network, enabling the model to capture non-linear 
relationships in the data. One of the most commonly used activation functions is the sigmoid function. As highlighted 
by Shmueli et al. (2018), the sigmoid function effectively maps input values to the range ,   -, facilitating 
convergence during training. Sigmoid function defined as: 

 ( )  
 

     
 (10) 

where   is an input to the function. Sigmoid function takes the derivative with respect to  : 

  ( )   ( ),   ( )- 
(11) 

2.3.2. Normalization and Denormalization  

Normalization ensures that all input variables are scaled between ,   - before being input to the NNAR model. 
According to Hapsari et al. (2023), normalization is performed using the following formula: 

  
  

       

         
 (12) 

Denormalization converts normalized outputs back to the original scale before the normalization process using the 
following formula: 

     
 (         )       

(13) 

(𝑥  𝑥    𝑥𝑝) 
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where    is the normalized value,      and      are the minimum and maximum of the data respectively, and    is the 
actual data at the time  . 

3. Materials and Methods  

3.1. Materials  

This research used the daily closing prices of stock mutual funds: (i) Rencana Cerdas (RNCN), (ii) Tram 
Consumption Plus (TRAM), (iii) Schroder Dana Prestasi Plus (SCHRP), (iv) Mandiri Investa Cerdas Bangsa (MICB), 
and (v) BNP Paribas Pesona (BNPP), with a total of 741 observations from March 1, 2022, to March 31, 2025. The 
data was collected from the websites www.investing.com and https://www.bareksa.com/id/data, with the criteria that 
the selected issuers have been operating for more than five years. 

3.2. Methods 

This research uses ARIMA and NNAR models to forecast stock mutual funds and determine which model provide 
the highest accuracy using Mean Average Percentage Error (MAPE). The steps of ARIMA model are as follows: 

a) Test the stationarity of mean using the Augmented Dickey-Fuller (ADF) test and the stationarity of variance 
using the Box-Cox transformation. 

b) Identify the model by Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots. 
c) Estimating the model’s parameters using Maximum Likelihood Estimation (MLE). 
d) Selecting the optimal ARIMA model based on the smallest Akaike Information Criterion (AIC) value. 
e) Residual diagnostic tests using the Ljung-Box test and Q-Q plot. 
f) Calculate the Mean Absolute Percentage Error (MAPE). 

The steps of NNAR model are as follows: 
a) Normalize the training dataset using equation (4). 
b) Identifying the order   by analyzing the PACF plot. 
c) Selecting the order   based on the smallest AIC value. 
d) Training the NNAR model with feedforward and backpropagation processed using various order  . 
e) Testing the model using the selected of order  . 
f) Applying denormalization to the training dataset. 
g) Selecting the most accurate model NNAR based on the smallest MAPE value. 
Then, both models are compared using the smallest MAPE values to determine which one more accurate, and 

generate the stock mutual fund price forecasts using the best model. 

4. Results and Discussion 

4.1. Stock Mutual Fund Data 

According to Hyndman & Athanasopoulos (2018), forecasting accuracy can be determined by evaluating the 
model's performance on new data that was not used during model training. In this research, 741 data were divided into 
80% as training data from March 1, 2022, to August 20, 2024; and 20% as testing data from August 21, 2024, to 
March 31, 2025. An illustration of the stock mutual fund data can be seen in Figure 2, which RNCN is used as the 
example issuer throughout the calculation and analyses.  

 

Figure 2: RNCN closing price 
 
In Figure 2 displays the stock mutual fund price movements for the RNCN issuer up to period 741. The plot shows 

a characteristic pattern of price fluctuations that eventually exhibit a downward trend after period 600. 

http://www.investing.com/
https://www.bareksa.com/id/data
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4.2. ARIMA Model 

4.2.1. Stationary Test 

The stationarity test using the Augmented Dickey Fuller (ADF) in equation (2) and Box-Cox Transformation were 
performed using RStudio and the results are presented in Table 1.  

Table 1: Stationarity Test Results 
Issuer ADF test (1) ADF test (2)   

RNCN 0.1824 0.01 0.97 ≈ 1 

 
ADF (1) in Table 1 showed that RNCN was not stationary (p-value = 0.1162 > 0.05), which failure to reject   . 

After first differencing (   ) was applied, ADF (2) showed that RNCN became stationary (p-value = 0.01 < 0.05). 
Furthermore, the Box-Cox transformation yielded   = 0.97, which is approximately to 1. Consequently, it can be 
concluded that the RNCN series satisfies the assumptions of stationarity in both the mean and variance. 

4.2.2. ARIMA Model Identification 

From the ADF test results after applying first differencing, it was found that   = 1. The identification of the order   
and   were identified using ACF and PACF plot, which are shown in Figure 3. 

 

Figure 3: ACF and PACF plot of RNCN 
 
Based on the ACF and PACF plots, significant lags were observed at lag 1, indicating three candidate ARIMA 

models are ARIMA(1,1,0), ARIMA(0,1,1), and ARIMA(1,1,1). 

4.2.3. Parameter Significance Test 

The candidate ARIMA models were estimated using the Maximum Likelihood Estimation (MLE) method in 
RStudio. The significance of each parameter was tested at a 5% significance level, results are presented in Table 2.  

Table 2: Parameter Estimation and Significance Test (1) 

Model Parameter 
Parameter 
Estimation 

p-value Description 

ARIMA(1,1,0)  ̂ 1.808686 0.72031 Not Significance 

  ̂  -0.0978 0.01711 Significance 

ARIMA(0,1,1)  ̂ 1.81021 0.72026 Not Significance 

  ̂  -0.08891 0.02177 Significance 

ARIMA(1,1,1)  ̂ 1.81419 0.7238 Not Significance 

  ̂  -0.31854 0.3012 Not Significance 

  ̂  0.22132 0.4835 Not Significance 

 

Table 3: Parameter Estimation and Significance Test (2) 

Model Parameter 
Parameter 
Estimation 

p-value Description 

ARIMA(1,1,0)  ̂  -0,0976 0,01732 Significance 

ARIMA(0,1,1)  ̂  -0,0887 0,02205 Significance 

 
The estimation results showed that parameter  ̂  in the ARIMA(1,1,0) model and parameter  ̂  in the 

ARIMA(0,1,1) model were statistically significant because p-value is greater than level significance. However, none 



               Sianturi et al. / International Journal of Quantitative Research and Modeling, Vol. 6, No. 2, pp. 208-217, 2025                         214 

 
of the parameters in the ARIMA(1,1,1) model were statistically significant. To improve model reliability, 
ARIMA(1,1,0) and ARIMA(0,1,1) models were re-estimated by excluding the insignificant constant term, results are 
shown in Table 3. 

 
The results of re-estimation in Table 3 validated the significance of the parameter in both models because p-value 

is greater than level significance. 

4.2.4. Selecting Best ARIMA Model  

After estimated parameter and significance test was done, the next step is to select the best model using the Akaike 
Information Criterion (AIC), as defined in Equation (8). The AIC values for each model were calculated using 
RStudio, and the results are presented in Table 4. 

Table 4: AIC value 
Model AIC 

ARIMA(1,1,0) 7491.24 

ARIMA(0,1,1) 7491.73 

 
Based on Table 4, the ARIMA(1,1,0) model was selected as the best model with smallest AIC value. So, the 

equation of ARIMA(1,1,0) is defined as: 
               (14) 

 

4.2.5. Diagnostic Test 

The Ljung-Box test was used to evaluate the presence of autocorrelation in the residuals. For the ARIMA(1,1,0) 
model, the test produced a p-value of 0.1708, which greater than significance level   = 0.05 indicates that the 
residuals exhibit white noise. The next step, to assess normality of residuals, a Q-Q plot was examined, as shown in 
Figure 4.  

 

Figure 4: Q-Q plot of residuals 
 
Figure 4 shows that the quantile points were found to align closely with the reference line, indicates that the 

residuals follow an approximately normal distribution.  

4.2.6. Stock Mutual Fund Forecasting with ARIMA Model 

The selected ARIMA models were used to forecast mutual fund prices for a seven-day period using RStudio. The 
forecast results for each issuer are summarized in Table 5. 

Table 5: Forecasting results with ARIMA model 

Period Date 
RNCN 

ARIMA(1,1,0) 

TRAM 

ARIMA(0,1,1) 

SCHRP 

ARIMA(0,1,1) 

MICB 

ARIMA(1,1,0) 

BNPP 

ARIMA(1,1,0) 

742 01/04/2025 15,284.37 1,591.95 28,509.72 1,958.59 22,412.87 

743 02/04/2025 15,284.31 1,591.95 28,509.72 1,958.69 22,412.94 

744 03/04/2025 15,284.32 1,591.95 28,509.72 1,958.68 22,412.94 

745 04/04/2025 15,284.32 1,591.95 28,509.72 1,958.68 22,412.94 

746 07/04/2025 15,284.32 1,591.95 28,509.72 1,958.68 22,412.94 

747 08/04/2025 15,284.32 1,591.95 28,509.72 1,958.68 22,412.94 

748 09/04/2025 15,284.32 1,591.95 28,509.72 1,958.68 22,412.94 
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Based on the data from period 741, the actual mutual fund prices were as follows: RNCN at 15,283.75, TRAM at 

1,593.02, SCHRP at 28,518.58, MICB at 1,959.45, and BNPP at 22,413.61. Compared to the actual prices, the 
forecasts in Table 5 shows minimal changes across all five issuers. RNCN, for instance, slightly increases on day one 
and then stabilizes. MICB and BNPP show small declines before stabilizing, while TRAM and SCHRP remain 
unchanged throughout. These results suggest that mutual fund prices are expected to stay relatively stable over the 
next week. 

4.3. NNAR Model 

4.3.1. Splitting Data 

The data splitting process for the NNAR model follows the same training and testing division explained in the 
previous section. 

4.3.2. Data Normalization 

Before proceeding to the next step, the training data for RNCN issuer was normalized using equation (12). This 
normalization is necessary because the sigmoid function in the NNAR model requires input data to be scaled within 
[0,1]. After normalization, the data was used for designing the neural network structure. 

4.3.3. NNAR Model Architecture Design 

The NNAR(   ) model consists of one input layer, one hidden layer, and one output layer. The input layer, 
denoted by order  , represent significant lag values identified from the Partial Autocorrelation Function (PACF) plot 
and are selected based on the lowest AIC value. The number of nodes in the hidden layer, denoted by order  , is 
determined through a trial-and-error process to identify the best performing NNAR model (Maier et al., 2023). The 
output layer consists of a single node, representing the forecasted value of the stock mutual fund prices. 

 

Figure 5: PACF NNAR model 
 
As shown in Figure 5, significant PACF values are observed at lag 1 (  = 1) and lag 2 (  = 2), then selected based 

on the lowest AIC value, as shown in Table 6. 

Table 6: AIC value 
Order   AIC 

1 -2019.58 

2 -2022.08 

 
Table 6 presents the AIC values for NNAR model. Among the candidates, order   = 2 yields the lowest AIC and is 

therefore selected for the NNAR model.  

4.3.4. Training and Testing 

The previously selected order   was used to determine the order   through a trial and error process during training. 
Model training was conducted using the backpropagation algorithm, implemented the “nnetar()” function in RStudio 
that automatically handles activation functions, weight updates, and output generation (Hyndman & Athanasopoulos, 
2018). 

Order   was selected by evaluating several NNAR(   ) models with varying   values and selecting the one with 
the lowest Mean Absolute Percentage Error (MAPE) on the testing set, as shown in Table 7. 

Table 7: AIC value 
Model Order   Order   MAPE 

NNAR(2,1) 2 1 6.24% 

NNAR(2,2) 2 2 5.49% 
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NANR(2,5) 2 5 6.47% 

 

Table 7 shows the MAPE values for each tested NNAR model. Although increasing the number of hidden nodes 
initially reduces the error, performance begins to degrade when   > 2. Therefore, NNAR(2,2) is chosen as the optimal 
model for RNCN. 

4.3.5. Data Denormalization 

Before evaluating the model performance, the forecasted results for the RNCN issuer were denormalized using 
equation (12). This step is necessary to convert the predicted values back to their original scale and the results were 
compared to the actual data for performance evaluation. 

4.3.6. Stock Mutual Fund Forecasting with ARIMA Model 

The selected NNAR models were used to forecast mutual fund prices for a seven-day period using RStudio. The 
forecast results for each issuer are summarized in Table 8. 

Table 8: Forecasting results with NNAR model 

Period Date 
RNCN 

NNAR(2,2) 

TRAM 

NNAR(4,1) 

SCHRP 

NNAR(4,2) 

MICB 

NNAR(2,2) 

BNPP 

NNAR(5,1) 

742 01/04/2025 15,283.48 1,600.86 28,632.04 1,954.85 22,483.55 

743 02/04/2025 15,283.27 1,611.24 28,741.69 1,950.55 22,586.98 

744 03/04/2025 15,283.09 1,613.85 28,700.55 1,946.87 22,610.05 

745 04/04/2025 15,282.92 1,617.36 28,676.18 1,943.76 22,625.23 

746 07/04/2025 15,282.77 1,620.75 28,644.03 1,941.15 22,644.67 

747 08/04/2025 15,282.64 1,623.07 28,593.66 1,938.98 22,654.92 

748 09/04/2025 15,282.51 1,625.43 28,551.72 1,937.19 22,662.38 

 
Based on the data from period 741, the actual mutual fund prices were as follows: RNCN at 15,283.75, TRAM at 

1,593.02, SCHRP at 28,518.58, MICB at 1,959.45, and BNPP at 22,413.61. Compared to the actual prices, as shown 
in Table 8, the forecasted prices for TRAM, SCHRP, and BNPP exhibit an increasing trend from period 742. In 
contrast, the prices for RNCN and MICB are predicted to decline until period 748. 

5. Conclussion 

This study successfully applied ARIMA and NNAR models to forecast stock mutual fund prices. The best models 
found were ARIMA([1],1,0) and NNAR(2,2) for RNCN, ARIMA(0,1,[1]) and NNAR(4,1) for TRAM, 
ARIMA(0,1,[1]) and NNAR(4,2) for SCHRP, ARIMA([1],1,0) and NNAR(2,2) for MICB, and ARIMA([1],1,0) and 
NNAR(5,1) for BNPP. The respective MAPE values were 6.83% and 5.49% for RNCN, 6.53% and 5.75% for 
TRAM, 8.57% and 7.10% for SCHRP, 8.39% and 8.74% for MICB, and 8.51% and 7.30% for BNPP. Overall, 
NNAR performed better in most cases, showing lower MAPE values than ARIMA.  
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