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Abstract 

Extreme distribution is the distribution of a random variable that focuses on determining the probability of small 

values in the tail area of the distribution. This distribution is widely used in various fields, one of which is 

reinsurance. An outbreak catastrophe is non-natural disaster that can pose an extreme risk of economic loss to a 

country that is exposed to it. To anticipate this risk, the government of a country can insure it to a reinsurance 

company which is then linked to bonds in the capital market so that new securities are issued, namely outbreak 

catastrophe bonds. In pricing, knowledge of the extreme distribution of economic losses due to outbreak catastrophe 

is indispensable. Therefore, this study aims to determine the extreme distribution model of economic losses due to 

outbreak catastrophe whose models will be determined by the approaches and methods of Extreme Value Theory and 

Peaks Over Threshold, respectively. The threshold value parameter of the model will be estimated by Kurtosis 

Method, while the other parameters will be estimated with Maximum Likelihood Estimation Method based on 

Newton-Raphson Iteration. The result of the research obtained is the resulting model of extreme value distribution of 

economic losses due to outbreak catastrophe that can be used by reinsurance companies as a tool in determining the 

value of risk in the outbreak catastrophe bonds. 
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1. Introduction  

Extreme events are events that rarely occur, but can cause very large losses. This incident can occur in various 

fields such as health, finance, agriculture and others. Examples are outbreak catastrophe, monetary crises, death of 

family head, crop failure, and so on. One tool that can be used to explain the risk of these events is the extreme 

distribution. The extreme distribution is the distribution of a random variable which is only limited to values that have 

a small probability of occurrence. In other words, the determination of risk using this distribution only focuses on the 

tail area of the distribution. Extreme distribution is widely used in various fields, one of which is the field of 

reinsurance. To prevent bankruptcy, reinsurance companies must determine the amount of claims so that the 

probability of it occuring is not too great. Thus, this extreme distribution will greatly help reinsurance companies in 

determining the amount of claims it bears because the occurrence of claims is included in extreme events with a small 

probability of occurrence. 

Outbreak catastrophe that occurs in a country not only cause health problems, but also cause great economic 

losses. These losses can occur in various sectors, such as tourism, households, corporations, finance, and others (Qiu 

et al., 2018). To anticipate the risk, the government can insure it to reinsurance companies. Then, to expand their 

coverage capacity, they transfer the risk to the capital market (Cox and Pedersen, 2000). One of the securities that can 

be used as a means to accepting this risk is a bond. These securities werer called outbreak catastrophe bonds (Liu et 

al., 2014) . The most important part in the pricing of these bonds is the determination of the risk of losses. Therefore, 

knowledge of this matter is urgently needed, one of which can be obtained by extreme distribution (Jockovic, 2012). 

Zimbidis et al. (2007) determined the extreme distribution of catastrophe losses with the Extreme Value Theory 
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(EVT) Approach, whose interest rates are stochastically determined through the Cox-Ingersoll-Ross Model (CIR). 

Chao and Zou (2018) determined the extreme distribution of catastrope losses with two trigger events each obtained 

by the EVT Approach which was then combined with the Copula function. Then, Residori (2019) determined the 

extreme distribution of catastrophe losses with the EVT Approach through the Block Maxima Method.  

Based on the explanation above, this study will focus on determining the extreme distribution of losses due to 

outbreak catastrophe. The approach and method used to determine this distribution are Extreme Value Theory (EVT) 

and Peaks Over Threshold (POT), respectively. The quantile model of the distribution will also be estimated by the 

High Quantile Estimation Model. The EVT approach was chosen because of the extreme nature of outbreak 

catastrophe events. Then, the POT method was chosen because the classification of extreme data is determined based 

on data that exceeds a certain threshold value, regardless of the time of catastrophe, so it is very effective to use 

considering the small number of data.  

2. Methods and Materials 

2.1. Methods 

The object of research used is data on economic losses due to outbreak catastrophe in various countries from 

1976 to 2020. Data is collected from various sources such as the World Bank (http://pubdocs.worldbank.org), Asian 

Development Bank (https://www.adb.org), and so on. The tail of the data distribution must be fat. It is examined via its 

kurtosis. The tail of the data distribution is said to be fat if the kurtosis is greater than three, and vice versa. Then, the threshold 

value parameter will be estimated by Kurtosis Method, while the parameters of Generalized Pareto Distribution (GPD) which are 

assumed to match the data that has been resampled will be estimated by Maximum Likelihood Estimation Method based on 

Newton-Raphson Iteration. After that, the assumption of match of distribution will be proven by Kolmogorov-Smirnov Test. 

Finally, extreme distribution models and their quantile models will be built with Peaks Over Threshold and High Quantile 

Estimation, respectively. 

2.2. Materials 

2.2.1. Kurtosis Method 

 

Threshold value is the boundary value between extreme data and non-extreme data. If               are 

defined as the data sorted from smallest to largest, then iteration of kurtosis calculations can be done with the 

following equation:  
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where   represents the number of observed data,   represents the number of members of the sub data,    represents 

the kurtosis of the  -subdata,  ̅  represents the average of the  -subdata, and   
  represents the standard deviation of 

the  -subdata. If  -subdata has been obtained with       for the first time, then the iteration is stopped and the 

largest data from the  -subdata is selected as the threshold value. After that, a data resample is done by reducing each 

extreme data by the threshold value. 

2.2.2. Generalized Pareto Distribution (GPD) 

 

According to Jockovic (2012), if       (   ) where   and   each represent the scale and shape parameters 

of the GPD, then the   distribution can be expressed as follows: 

 

    ( )    .   
 

 
/
  

 
 
                                                                     ( ) 

 

while the density function is as follows: 

    ( )  
 

 
.   

 

 
/
 (

 
 
  )

                                                                     ( ) 

 

where                          
 

 
           



                Ibrahim et al.  / International Journal of Quantitative Research  and Modeling, Vol. 2, No. 1, pp. 37-45, 2021                         39 

 
2.2.3. Maximum Likelihood Estimation 

 

Maximum Likelihood Estimation is a method of estimating the parameters of a probability distribution that 

maximizes the likelihood function. If               are defined as random variables which are independent and 

identically distributed with the probability function   (     ) where   is an unknown parameter, then the likelihood 

function of     can be expressed as follows: 

 

 (   )  ∏   (     )

 

    

                                                                               ( ) 

 

where   ,       -. The log-likelihood function is the natural logarithmic form of equation (4). According to 

Purba et al. (2017), this function is monotonically related to equation (4) so that maximizing this function is 

equivalent to maximizing equation (4). The following is an expression of the log-likelihood function: 
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If the first derivative of equation (5) against   exists, then the value   which maximizes equation (5) is the 

solution of the following equation: 

 

 

  
  [∏   (     )

 

    

]                                                                                ( ) 

2.2.4. Newton-Raphson Iteration 

 

According to Bakari et al. (2016), Newton-Raphson iteration is a method of estimating the maximum solution 

of a function numerically. Let  (   ) be a function with unknown parameter   and the (   )-th and  -th estimates 

of   are denoted as  ̂    and  ̂           . If the first and second derivatives of  (   ) against   in  ̂    are 

known, then the general equation is used for finding the optimum solution of  (   ) is as follows: 
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where   ( ̂   ) represents the first derivative of  (   ) against   in  ̂ , and   ( ̂     ) and    ( ̂     ) represent the 

first and second derivatives of  (   ) against   in  ̂   , respectively. The error value for each iteration, denoted by 

  , is determined by the following equation: 

 

   | ̂   ̂   |                                                                            ( ) 

 

Let   be error that is tolerated. If the iteration  -th with      has been obtained for the first time, the iteration is 

stopped. The value of    ̂  is called the maximum solution if    ( ̂ | )   . 

2.2.5. Kolmogorov-Smirnov Test 

 

Kolmogorov-Smirnov test is a formal test used to check the fit between certain empirical and theoretical 

distributions. According to Vribik (2020), the test statistic in this test is the largest absolute difference between the 

two distributions whose value can be determined by the following equation: 

 

      *   +                                                                            ( ) 

   

where     represent the maximum value between        (   )    (   )  and        (   )    (     ) . To the 

significance level of  ,   will be compared with the critical value   
  which is obtained from the Kolmogorov-

Smirnov table according to the number of data and the value of   selected. There is a two-tailed hypothesis 
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formulation of this test, namely      ( )    ( ) and      ( )    ( ). Reject    if     

 , meaning that at 

the significance level  , the empirical distribution does not fit the specified theoretical distribution, and vice versa. 

2.2.6. Extreme Value Theory (EVT) 

According to Gilli and Kellezi (2006), Extreme Value Theory (EVT) is an approach used to determine extreme 

distributions so that it focuses on determining probability in the tail area. According to Jindrova and Pacakova (2016), 

there are two methods in the EVT approach, namely Block Maxima (BM) and Peaks Over Threshold (POT). The BM 

method identifies extreme data based on the highest value of each period (weekly, monthly, and so on), while the 

POT method identifies extreme data based on values that exceed a certain threshold value regardless of the time of the 

event. 

2.2.7. Peaks Over Threshold Method 

 

Peaks Over Threshold is a modern method of estimating the extreme distribution where the selection of the 

extreme values are based on values that exceed a certain threshold value regardless of the time of the event. Suppose 

  as random variable which represents economic losses due to outbreak catastrophe with distribution    and   

represents a large threshold value. If the random variable       with     is defined which represents the 

excess of extreme economic losses due to the outbreak catastrophe from the threshold value, then the   distribution 

can be determined by the following equation: 
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where          with        *     * +   ( )   +. If equation (10) is transformed, then the extreme 

distribution of   is as follows: 
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Based on the Pickands-Balkema-de Haan theorem, if the threshold value of   is large, then   ( ) can be 

approximated by    (   ) or   ( )      ( )      (   ). Then, Galambos et al. (1993) formulated that the 

probability   is greater than the threshold value is 
 

 
, where   and   represent the number of observed data and the 

number of extreme data, respectively. Based on this, equation (11) can be rewritten as follows: 
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2.2.8. High Quantile Estimation Model 

 

According to Deng et al. (2020), High Quantile Estimation (HQE) model is a model used to determine the  -quantile of 

the extreme distribution, where   (  ( )  ). If   (  )    is defined, then the HQE model of equation (12) can be 

determined by the following equation: 
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3. Results and Discussion 

The data must have a fat distribution tail. This can be seen from the data kurtosis. Calculation of data kurtosis is 

done by equation (1). The result of the calculation of kurtosis obtained is 10.8989. Since the kurtosis is greater than 

three, the tail of the data distribution is confirmed to be fat-tailed so that the process can continue. 

 

3.1. Threshold Value Estimation 

The iteration of the kurtosis calculation is done with equation (1), the process is assisted by the Scilab software. 

Snippets of the iteration results are presented in Table 1. 
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Table 1. The Iteration of the Kurtosis Calculation 

 

 

 

 

 

 

 

 
 

 

 

Based on Table 1, it appears that in the 43rd iteration,     2.949846   for the first time. Therefore, the 

iteration is stopped and the largest datum of the 61-subdata, 664, is chosen as the threshold value so that there are 42 

extreme data (  = 42), namely the 62th datum to the 103th datum. After that, resample the data. Snippets of resample 

data results are presented in Table 2. 
Table 2. Resample Data Results 

 

 

 

 

 

 

 

 

 

 

 
Based on Table 2, it appears that the smallest data is USD 36 million, while the largest data is USD 24,336 

million. 
 

 

3.2. GPD Parameter Estimation 

Suppose that                 are random variables that are independent and have identical distributions that 

represent the economic loss due to the  th outbreak catastrophe. If                           defined as 

independent random variables and have a    (   ) are the excess of extreme economic losses from the threshold 

value, then based on equations (4) and (5), the likelihood and the log-likelihood functions of     can be expressed as 

follows: 
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respectively, where   ,   - . Based on (6), the value of   that maximizes the equation (15) is the solution of the 

following equation: 
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where  ( ) represents the first partial derivative of   , (   )- against   whose elements are as follows: 
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Iteration  -subdata    

1 103-subdata 10.898918 

2 102-subdata 8.152811 

3 101-subdata 8.836517 

      
41 63-subdata 3.329750 

42 62-subdata 3.164317 

43 61-subdata 2.949846 

       

1 36 

2 80 

3 316 

    
40 15092 

41 15392 

42 24336 
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It appears that equations (17) and (18) have a closed form so that   will be estimated through the Newton-

Raphson Iteration. The second partial derivative of   , (   )- against  , denoted  ( ), is determined first.  ( ) is 

stated as follows: 
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Based on equation (7), the Newton-Raphson iteration is done with the following equation: 
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Next, the tolerable error value is chosen, namely    0.000001. For the first iteration, the initial estimate vector is 

determined first. According to Jockovic (2012), the initial estimated vector of GPD is determined by the following 

equation: 
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where  ̅ and   represent the mean and standard deviation of  , respectively. Iteration is done with the help of Scilab 

software. Snippets of iterotion results are presented in Table 3. 

 
Table 3. Newton-Raphson Iteration 

Iteration -   ̂   ̂     

1 5024.7906987 -0.185757149 1009.272534791 

2 5635.4567170 -0.195067124 610.666018432 

3 5455.6182602 -0.154398012 179.838461380 

        
9 3204.6723139 0.359740363 1.822813535934 

10 3204.6666983 0.359744618 0.005615644666 

11 3204.6666982 0.359744618 0.000000055364 

 

Based on Table 3, it appears that the iteration stops at the 11th iteration with an error of   0.000000055364  and 

the parameter estimators obtained are                and              . It appears that    ,     -
  

      ( ̂ )   ,(        (          )
             

 -   , so  ̂   is the maximum solution of 

  , (   )-. 
 

3.3 Fit Test for Empirical Distribution and GPD 
 

The following is the Probability-Probability Plot (P-P Plot) and Quantile-Quantile Plot (Q-Q Plot) of the empirical and GPD 

distributions which can be seen in Figure 1. 
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Figure 1. P-P Plot (a) and Q-Q Plot (b) 
 

Based on Figure 1, it appears that the set of points on the P-P Plot and Q-Q Plot are scattered around the one-
gradient line, so it can be seen that the empirical distribution fits the GPD. Formal testing is carried out by the 
Kolmogorov-Smirnov test. The level of significance chosen is   = 0.05. Visualization of fitting empirical and GPD 
distributions using the Kolmogorov-Smirnov test was made with the help of Scilab software. The result of the 
visualization is presented in Figure 2.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The Fitting of Empirical Distribution and GPD with the Kolmogorov-Smirnov Test 

 

Based on Figure 2, it appears that the test statistics are at intervals (10,000, 15,000). Based on equation (9), the 
test statistic obtained is           . Based on the number of data and the selected significance level, the critical 
value obtained from the Kolmogorov-Smirnov table is    

             . It appears that      
    , so the decision 

taken is to accept   , which means that the empirical distribution follows GPD. 

3.4. Building Extreme Distribution from Economic Losses Due to Outbreak Catastrophe 

Based on equation (12), the following is the extreme distribution of economic losses due to outbreak catastrophe: 
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Based on equation (25), if the amount of the bond claim is USD 1,167.26 million, then the probability of the 

claim will be 0.35. Then, based on equation (13), here is the quantile model of equation (25): 
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Based on equation (26), if the probability of a claim is 0.35, then the of the bond claim will be USD 1,167.26 

million. 

(a) (b) 
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3.5. Discussion 

Reinsurance companies must determine the amount of the claim so that the amount is greater than USD 664 

million so that the probability of it happening is not too big. The sponsor as the insured must know the relationship 

between the amount of the claim expected and the probability of its occurrence. Investors also have to think carefully 

about the risk of losing the principal and the amount of return they might get. For outbreak catastrophe bonds with a 

principal amount of 1, a coupon rate of 10%, an interest rate of 8%, and a term of one year, these relationships are 

visualized in a Cartesian Diagram. Visualization is done with Scilab software. The results of the visualization are 

presented in Figure 3. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The relationship between the amount of the claim and the probability of the claim (a),                                                  

and the relationship between the risk of loss of principal and the amount of return (b) 

 

Based on Figure 3, it appears that the greater the claims expected by the sponsor, the smaller the probability 

of claims occurring. Therefore, if the sponsor does not want to lose the benefits of the bond, the determination of the 

amount of the claim must be calculated in such a way that the amount is not too large so that the probability of the 

claim is not too small. Then, it also appears that the higher the risk of losing principal, the higher the return that 

investors may get. The minimum return that investors may get is 11.55%, while the maximum return that investors 

may get is 66.15%. Therefore, if investors dare to take risks, then buying outbreak catastrophe bonds assuming the 

principal is lost is more profitable. 

4. Conclussion 

Based on the extreme distribution of economic losses due outbreak catastrophe, the threshold value of its losses is 

USD 664 million. Therefore, reinsurance companies must determine the amount of the claim so that it is greater than 

this value so that the probability of its occurrence is not too large. For sponsors, the greater the expected claim value, 

the less likely it is that claims will occur. Therefore, if the sponsor does not want to lose the benefits of the bond, the 

amount of the claim must be calculated in such a way that the amount is not too large so that the probability of its 

occurrence is not too small. Meanwhile, for investors, the higher the risk of losing principal, the higher the probability 

of a return. Therefore, if investors dare to take risks, bonds with the assumption of losing principal are more 

profitable. 
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