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Abstract 

Infrastructure a crucial role in economic development and the achievement of Sustainable Development Goals (SDGs), with 

investment being a key activity supporting this. Investment involves the allocation of assets with the expectation of gaining profit 

with minimal risk, making the selection of optimal investment portfolios crucial for investors. Therefore, the aim of this research 

is to identify the optimal portfolio in infrastructure stocks using the Mean-VaR model. Through portfolio analysis, this study 

addresses two main issues: determining the optimal allocation for each infrastructure stock and formulating an optimal stock 

investment portfolio while minimizing risk and maximizing return. The methodology employed in this research is the Mean-VaR 

approach, which combines the advantages of Value at Risk (VaR) in risk measurement with consideration of return expectations. 

The findings indicate that eight infrastructure stocks meet the criteria for forming an optimal portfolio. The proportion of each 

stock in the optimal portfolio is as follows: ISAT (2.74%), TLKM (33.894%), JSMR (3.343%), BALI (0.102%), IPCC (5.044%), 

KEEN (14.792%), PTPW (25.863%), and AKRA (14.219%). The results of this study can serve as a foundation for better 

investment decision-making. 
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1. Introduction 

The presence of infrastructure, as a collection of physical and non-physical facilities serving society, plays a central 

role in supporting economic growth. In line with this view, adequate infrastructure development is seen as an essential 

strategy in improving the quality of human resources. Besides being a driver of economic growth, infrastructure also 

focuses on achieving Sustainable Development Goals (SDGs). SDGs set targets for building resilient infrastructure, 

promoting inclusive and sustainable industrialization, and fostering innovation. In this context, sustainable investment 

in the infrastructure and innovation sector plays a crucial role as an integral element of one of the 17 Global Goals in 

the 2030 Sustainable Development Agenda). The importance of adopting an integrated approach is key to the success 

of achieving all these goals. 

Based on the previous explanation, public interest in investment is increasing as investment provides flexibility for 

use both in the short and long term. Investment activities involve the placement of money or capital in a company or 

project with the hope of gaining profit within a certain period. To achieve optimal investment goals, especially in 

facing market fluctuations, it is important for investors to form a portfolio that not only maximizes expected returns 

but also manages risks at an acceptable level (Asthana & Ahmed, 2023). Success in managing this portfolio requires a 

careful approach and consideration of factors such as asset diversity, balanced allocation, and appropriate risk 

management strategies. Portfolios are formed as a step to reduce investment risk by combining multiple assets (Deng 

et al., 2021). The principles of portfolio optimization and diversification play a significant role in the development and 

understanding of financial markets (Vereshchaka, 2021). Portfolio selection can create a combination that maximizes 

expected returns according to the accepted level of risk (Hu et al., 2021). 

To achieve optimal investment goals, especially in the face of market fluctuations, it is crucial for investors to 

construct a portfolio that not only maximizes expected returns but also maintains risk at an acceptable level. Success 

in managing this portfolio requires a careful approach and consideration of factors such as asset diversification, 
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balanced allocation, and appropriate risk management strategies. Thus, the formation of an optimal investment 

portfolio becomes a crucial step toward achieving long-term financial success and minimizing potential risks. 

Therefore, the formation of an optimal portfolio becomes a crucial step in designing an investment strategy. 

Portfolios are constructed as a measure to reduce risk in investments by combining multiple assets. The principles of 

portfolio optimization and diversification play a significant role in the development and understanding of financial 

markets. Portfolio selection can form a combination that maximizes expected returns according to the accepted level 

of risk (Hu et al., 2021). 

The determination of weights to achieve an optimal portfolio has involved several researchers using Mean-

Variance optimization. However, it is worth acknowledging that traditional approaches like Mean-Variance 

Optimization have shortcomings, particularly in the use of variance as a risk parameter, which is often questioned 

(Salsabilla et al., 2023). Therefore, research in this field is increasingly highlighting the use of alternative methods 

such as Value at Risk (VaR). VaR becomes a crucial risk measure, defined as the estimate of the maximum loss that 

can occur over a specific period at a certain confidence level. Although widely applied to estimate financial risk, VaR 

has the advantage of providing a more comprehensive overview of risk by identifying the percentiles of the 

distribution of losses or gains, without focusing on every loss that exceeds the level (Lesmana et al., 2019). 

There are several relevant studies to this research, Liu et al. (2021), discussed portfolio selection with uncertain 

returns based on Value at Risk. Behera et al. (2023), discussed portfolio optimization using Mean-VaR and developed 

a Machine Learning model for predictive modeling. Gharaibeh, O. (2019), discussed portfolio optimization on 

infrastructure sub-index returns in Jordan using CVaR. 

Based on the descriptions above, this research examines optimization conducted with the Mean Value-at-Risk 

(Mean-VaR) model approach to determine the optimal selection of company stocks for constructing a portfolio with 

minimal risk and maximum return. The results of this study are expected to provide considerations for investment 

decision-making for investors, especially in the stocks analyzed in this research. 

2. Literature Review 

2.1. Investment 

Investment is an individual's commitment to allocate owned assets with the goal of obtaining benefits from the 

allocation in the future (Balamurugan & Sivanesan, 2022). Investment should have a specific goal, allowing the 

determination of a timeframe to align with suitable products. One of the benefits of investment is the potential for 

asset or capital growth, as it can generate higher profits. Investments are divided into two types: real assets and 

financial assets. Real assets are usually tangible assets, such as land, machinery, gold, or houses. Meanwhile, financial 

assets include stocks, deposits, and mutual funds (Feruza, 2023). The selection of capital placement to be invested can 

be in various types; therefore, sufficient knowledge is needed to analyze the risks and benefits of which investment 

type is good to buy or sell. 

2.2. Stock Return 

In investing, individuals aim to achieve rewards after allocating their capital to a particular stock. Return serves as 

the reward for investors who bear the risk of their investment. Stocks offer investors the potential for significant 

returns in a short period, but these returns are proportionate to the associated risks (Liu et al., 2021). Stock return can 

be calculated using the following formula, 

 

    
           

       
 (1) 

with, 

    : Return of stock i at time  , 

    : Price of stock i at time  , 

        : Price of stock i at time    . 

 

Furthermore, the expected value of return can be determined from the stock return using the following formula, 

          
 

 
∑      

   

   

 (2) 

 

Where k is the number of periods used. The determination of variance and covariance can be calculated using the 

following mathematical equations, 
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with, 

  
  : Variance of stock i, 

     : Covariance between stock i and j, 

   : Expected return of stock i, 

   : Expected return of stock j. 

2.3. Burr (4P) Distribution 

The Burr distribution is one of the significant non-negative continuous probability distributions with fat tails (M. 

Shakil & Kibria, 2020). The Burr distribution is typically used to depict statistical characteristics that are not uniform 

and is widely applied in financial risk assessment and insurance (Xia et al., 2023). The probability density function 

and cumulative distribution function of the Burr distribution with 4 parameters, they are as follows, 
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with         and       . 

Based on equation (5), the formulas for expectation and variance can be obtained as follows, 
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2.4. Log-Logistic (3P) Distribution 

The Log-Logistic distribution is one of the significant continuous probability distributions with heavy tails 

determined by scale and shape parameters (Muse et al., 2021). The Log-Logistic distribution has a probability density 

function and a hazard function that resemble those of the Log-Normal distribution but with heavier tails, supporting 

more accurate inferences. As for the probability density function and cumulative distribution function of the Log-

Logistic distribution with 3 parameters, they are as follows, 
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Based on equation (5), the formulas for expectation and variance can be obtained as follows, 
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2.5. Portfolio 

Portfolios are collections of all the assets owned by an investor. While measuring the return and risk for individual 

assets is important, for portfolio managers, understanding the return and risk of the entire set of assets in the portfolio 

is crucial. In the modern era, the approach to portfolio construction has shifted from traditional portfolio approaches 

to modern portfolio approaches. Traditional portfolio approaches involve diversifying the portfolio by randomly 



                Yasmin et al. / International Journal of Quantitative Research and Modeling, Vol. 5, No. 1, pp. 74-82, 2024                               77 

 

 

selecting assets, whereas modern portfolio approaches involve analytically forming portfolios using statistics and 

mathematics (Kumar & Shahid, 2023). 

Algebraically, the return of an investment portfolio    , consisting of N risky assets, is expressed as the weighted 

sum of the returns of each asset in the portfolio, as shown in Equation (13) (Sukono et al., 2017), 

    ∑     
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(13) 

Using a mathematical approach, the return of an investment portfolio in Equation (13) can be expressed as shown in 

Equation (14), 

         

                 
(14) 

Based on Equation (13), the average return of an investment portfolio     can be determined as shown in Equation 

(15), 

    ∑     
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where            is the average return of stock            with N being the number of analyzed stocks) at 

time t, and                    is the transpose vector of the asset   returns          with N being the number 

of analyzed stocks). If we denote            , represent the vector of stock return, mean, vector of weights, and the 

unit vector, respectively, defined as, 
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Referring to Equation (13), the algebraic expression for the variance of the investment portfolio return can be 

formulated in Equation (17), 
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And the form of     can be expressed as, 
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where     is the covariance between stock   and  , with     √   
                   called standard deviation. 

Furthermore, let   dan   respectively denote the covariance matrix and the identity matrix, as expressed in equation 

(18), 
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2.6. Optimization Portfolio Investment with Mean-VaR 

The estimation of Value at Risk depends on the probability distribution of asset returns or investment portfolio. 

The Value at Risk (VaR) of an investment portfolio with weight vector  , denoted as      , is calculated using 

Equation (20) 

         (         )  

or 

         {      ( 
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 } (20) 
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where    is the allocated fund in the formation of the investment portfolio and    is the   percent quantile of the 

standard normal distribution when a significance level of   is given. Typically, the significance level       . 

If the risk level is measured using Value at Risk (VaR), the optimization problem becomes the Mean Value at Risk 

portfolio optimization as expressed in equation (21) (Lesmana et al., 2019), 

   {      (        
    

 
 *} 

(21) 

                 

In searching for a solution to the Mean Value at Risk portfolio optimization problem with a risk tolerance factor as 

in equation (20), there are approaches to determine the optimal weights, including: (a) Risk tolerance factor approach 

    and (b) Lagrange multiplier approach. The Lagrange function can be expressed as follows, 

                     
    

 
           (22) 

The optimal weight values can be obtained using the risk tolerance factor approach        The vector equation 

for the weights represents the solution to the Mean Value at Risk portfolio optimization problem, with the optimal 

weight solution for a specific risk tolerance factor denoted as w as shown in equation (23), 

  
                

                    
 (23) 

In addition to utilizing the risk tolerance factor approach      , another method involves employing the 

Lagrange multiplier approach, 
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(24) 

with 

         

               
                  

 , with    being the inverse of the covariance matrix  . 

3. Materials and Methods 

3.1. Materials 

In this research, the objects used are daily stock closing data in the infrastructure sector listed on the Indonesia 
Stock Exchange. The period used is from December 1st, 2021, to December 1st, 2023. The data obtained is secondary 
data obtained from site yahoo finance. In the research, the tools used are Microsoft Excel and EasyFit. 

3.2. Methods 

1) Calculate the stock return values using equation (1). Next, conduct a test of the stock return distribution model 
using EasyFit. Stocks for which the hypothesis is rejected are excluded from the calculation. 

2) Calculate the expected value and variance of stock returns based on their distributions using equations (7) and 
(8) for the Burr distribution (4P) and equations (11) and (12) for the Log-Logistic distribution (3P). Stocks with 
negative expected returns are excluded from the calculation. Next, calculate the covariance of returns using 
equation (4). And then, determine the expected value and covariance of the portfolio and represent them in 
vector form as in equation (16). 

3) Optimizing the portfolio using Mean-VaR 
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4. Results and Discussion 

4.1. Return of Stocks 

The first step is to calculate the stock returns. Stock returns are calculated using equation (1). After obtaining the 

stock returns, the next step is to test the distribution model of the returns to examine the distribution of the return 

values for each stock. The distribution model test is conducted using the Anderson-Darling test with a significance 

level of 1%. Next, the distribution test process is carried out with the Anderson-Darling test with the following 

hypotheses: 

   : Stock returns follow the assumed distribution, 

   : Stock returns do not follow the assumed distribution. 

The Anderson-Darling test is conducted using EasyFit. The results can be seen in Table 1. 

Table 1: Anderson-Darling Test Return of Stock 

Stock Distribution        
         

Statistic Rejected 

CMNP Burr 3.9074 6.7596 Yes 

KARW Burr 3.9074 4.6551 Yes 

ISAT Log-Logistic 3.9074 0.86928 No 

          

AKRA Log-Logistic 3.9074 1.6443 No 

 
Based on Table 1, it is found that there are 21 stocks for which the assumption (  ) is not rejected, namely ISAT, 

TLKM, JSMR, BALI, etc. 

4.2. Expected, Variance, and Covariance of Stocks Return 

Based on the previous results, 21 stocks follow either the Burr (4P) distribution or the Log-Logistic (3P) 
distribution. The first step is to calculate the expected and variance return values using the formulas for each 
distribution. Any non-positive expected return values are excluded from the calculation. The results can be seen in 
Table 2. 

Table 2: Expected and Variance Return of Stock 

Stock 
Expected 
Return 

Variance 

ISAT 0.000482 0.000540 

TLKM 0.000962 0.000213 

SSIA -0.000035 0.000696 

      

AKRA 0.001260 0.000611 

 

Based on Table 2, it is found that only 8 stocks meet the criteria for portfolio formation. The next step is to calculate the 

covariance, as presented in Table 3. 

Table 3: Variance-Covariance Return of Stock 
Stock ISAT TLKM JSMR BALI IPCC KEEN PTPW AKRA 

ISAT 0.000540 0.000011 0.000052 0.000032 0.000050 0.000052 0.000023 0.000024 

TLKM 0.000011 0.000213 0.000043 -0.000018 0.000027 0.000013 0.000010 -0.000001 

JSMR 0.000052 0.000043 0.000345 0.000023 0.000032 0.000029 0.000020 0.000073 

BALI 0.000032 -0.000018 0.000023 0.000558 0.000033 -0.000011 0.000026 0.000024 

IPCC 0.000050 0.000027 0.000032 0.000033 0.000348 0.000053 0.000035 0.000031 

KEEN 0.000052 0.000013 0.000029 -0.000011 0.000053 0.000872 0.000030 0.000031 

PTPW 0.000023 0.000010 0.000020 0.000026 0.000035 0.000030 0.000199 0.000032 

AKRA 0.000024 -0.000001 0.000073 0.000024 0.000031 0.000031 0.000032 0.000611 

 

Next, the expected values are formed into vector form as follows, 
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and covariances are formed into vector form as follows, 
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4.3. Portfolio Optimization using Mean-VaR 

The computation of the weight for each stock (  ), the anticipated return, and the portfolio's VaR using Microsoft 
Excel yielded outcomes detailed in Table 4. 

Table 4: Portfolio Optimization Results 

                                           

0 0.01252 0.07015 0.27028 0.09312 0.09248 0.09748 0.05386 0.24950 0.07314 0.00081 1 0.012516 

0.3 0.01225 0.06859 0.27278 0.09094 0.08913 0.09576 0.05730 0.24983 0.07566 0.00082 1 0.012519 

0.6 0.01196 0.06707 0.27523 0.08881 0.08588 0.09408 0.06065 0.25016 0.07812 0.00082 1 0.012526 

0.9 0.01165 0.06558 0.27763 0.08673 0.08269 0.09244 0.06393 0.25048 0.08053 0.00083 1 0.012538 

1.2 0.01132 0.06411 0.27998 0.08468 0.07955 0.09083 0.06716 0.25079 0.08290 0.00084 1 0.012554 

1.5 0.01098 0.06266 0.28231 0.08266 0.07644 0.08923 0.07035 0.25110 0.08525 0.00085 1 0.012574 

                          

6.3 0.00178 0.03377 0.32874 0.04230 0.01461 0.05743 0.13395 0.25727 0.13193 0.00101 1 0.013805 

6.6 0.00077 0.03024 0.33441 0.03737 0.00706 0.05355 0.14172 0.25803 0.13764 0.00103 1 0.014051 

6.8 0.00003 0.02742 0.33894 0.03343 0.00102 0.05044 0.14792 0.25863 0.14219 0.00105 1 0.014261 

 

The relationship between the expected return portfolio and the       risk level, or the efficient frontier graph, is 

depicted in graphical form in Figure 1. 

 

 

Figure 1: Efficient Frontier Portfolio 
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Next, calculate the ratio between the expected return and VaR, and the results are presented in Table 5. 
 

Table 5: Ratio Portfolio 

            Ratio 

0 0.00081 0.012516 0,064495 

0.3 0.00082 0.012519 0,065183 

0.6 0.00082 0.012526 0,065828 

0.9 0.00083 0.012538 0,066435 

1.2 0.00084 0.012554 0,067007 

1.5 0.00085 0.012574 0,067548 

        

6.3 0.00101 0.013805 0,073291 

6.6 0.00103 0.014051 0,073416 

6.8 0.00105 0.014261 0.073448 

 
The optimization portfolio graph between the ratio and VaR is presented in Figure 2.  
 

 

Figure 2: Optimal portfolio 
 

Based on Figure 2, it can be observed that the ratio value between the expected return and portfolio VaR continues 
to increase within the risk tolerance interval of        . Subsequently, the highest ratio value between the 
expected return and portfolio VaR is 0.073448, with a   value of 6.8. Thus, the optimal portfolio using the Mean-VaR 
model is obtained when      . 

5. Conclussion 

There are 8 stocks that meet the criteria for forming an optimal portfolio with the proportion of each stock as 

follows: ISAT at 2.74%. TLKM at 33.894%. JSMR at 3.343%. BALI at 0.102%. IPCC at 5.044%. KEEN at 14.792%. 

PTPW at 25.863%. and AKRA at 14.219%. The optimal portfolio with Mean-VaR is obtained when the highest ratio 

value is achieved. In this study. the optimal portfolio is generated when the risk tolerance     is 6.8. where the VaR 

risk level is 0.014261 and the expected return is 0.00105. 
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