

Available online at https://journal.rescollacomm.com/index.php/ijqrm/index

International Journal of Quantitative Research and

Modeling

Vol. 5, No. 3, pp. 341-353, 2024

e-ISSN 2721-477X

p-ISSN 2722-5046

Securing Network Log Data Using Advance Encryption Standard Algorithm

and Twofish with Common Event Format

Moch. Dzikri Azhari Ali
1*

, Asep Id Hadiana
2
, Melina

3

1,2,3
Department of Informatics, University of Jenderal Achmad Yani, Cimahi, Indonesia

mochdzikriazhari20@if.unjani.ac.id

Abstract

The rapid advancement of information technology demands enhanced security for data exchange in the digital world. Network

security threats can arise from various sources, necessitating techniques to protect information transmitted between interconnected

networks. Securing network logs is a critical step in strengthening overall network security. Network logs are records of activities

within a computer network, including unauthorized access attempts, user activities, and other key events. This research focuses on

developing a network log security system by comparing the performance of the Advanced Encryption Standard (AES) and Twofish

algorithms, integrated with the Common Event Format (CEF) for encrypting network logs. Tests were conducted on network log

datasets to evaluate system functionality and performance. Results indicate that the AES algorithm performs encryption and

decryption faster than Twofish. Across five tests with different file sizes, AES took an average of 2.1386 seconds for encryption,

while Twofish required 22.8372 seconds. For decryption, AES averaged 2.451 seconds compared to Twofish’s 26.140 seconds.

The file sizes after encryption were similar for both algorithms. Regarding CPU usage, AES demonstrated higher efficiency. The

average CPU usage during AES encryption was 0.5558%, whereas Twofish used 23.2904%. For decryption, AES consumed

0.4682% of CPU resources, while Twofish required 13.7598%. These findings confirm that AES is not only faster in both

encryption and decryption but also more efficient in terms of CPU usage. This research provides valuable insights for optimizing

network log security by integrating standardized log formats, like CEF, with appropriate encryption techniques, helping to safeguard

against cyber threats.

Keywords: AES, CEF, cryptography, network log, Twofish

1. Introduction

The rapid development of information technology makes information security, especially on internet networks, very
important. The imbalance between technological advances and security systems that do not evolve over time can lead
to system vulnerabilities (Akhriana & Irmayana, 2019). Weak internet security increases the risk of data theft, known
as cybercrime (Nyoman Putri Purnama Santhi & Nengah Nuarta, 2023). In 2020, malware attacks increased by 358%
and ransomware increased by 435% compared to the previous year (Budi et al., 2021). In Indonesia, since 2019, the
Ministry of Communication and Information recorded 29 cases of data leakage in institutions and companies, mostly
caused by weak security (Samad & Pratama Dahlian Persadha, 2022). Therefore, a security system that can detect attacks
becomes indispensable (Alamsyah et al., 2020).

Cryptography is one method to maintain data security by applying information encoding techniques, and encryption
is one of the methods used in cryptography (Putra et al., 2023) (Melina et al., 2022). The encryption process converts
plaintext into ciphertext, making the data unreadable or secret. While decryption is the reverse process that returns the
ciphertext to plaintext, so that the encrypted data can be restored to its original form (Nurnaningsih & Permana, 2018).
There are various cryptographic techniques used to encode messages or information data, including substitution and
permutation techniques. One cryptographic method that utilizes both is the Advanced Encryption Standard (AES) and
Twofish algorithms. The AES algorithm uses 128-bit encryption blocks with keys of 128, 192, or 256-bit size and works
through several rounds of transformations involving substitution, permutation, mixing, and key addition. Meanwhile,
the Twofish algorithm is an algorithm that also utilizes Feistel networks and works on 128-bit blocks with keys up to

mailto:mochdzikriazhari20@if.unjani.ac.id

342 Ali et al / International Journal of Quantitative Research and Modeling, Vol. 5, No. 3, pp. 341-353,

256-bit in size. Twofish is known for its flexibility and simple yet effective design, making it a strong competitor to
AES in terms of performance and security (Rizvi et al., 2011).

Applying encryption to network logs can provide a high level of protection. The encryption process makes network
logs difficult to read or manipulate by unauthorized parties, so a hacker will find it difficult to read or make significant
changes to network logs without having the appropriate encryption key (Lantz, 2006). Network logs are records or
recordings of activities that occur within a computer network that can detect and respond to attacks, and monitor network
health so there needs to be a sufficient strategy to protect network log data (Ramli et al., 2023). Network log security is
a very important step to strengthen the security of the network (Lantz, 2006). However, the diversity of log formats used
by various applications can make it difficult for system administrators, intrusion detection system (IDS) developers, and
security analysts to manage and interpret log data. To solve this problem, there are several log format standards, one of
which is the Common Event Format (CEF) which is better than other formats because it has keys such as 'act' (action in
the event), 'app' (application protocol), 'request', 'request Method', and others. The purpose of this standardization is to
simplify the analysis process and improve interoperability between systems. However, the adoption of this common log
format is still limited, especially in the context of intrusion detection systems (Sapegin et al., 2014). Moreover, in
network security, CEF is used as an industry-recognized logging format, which allows data to be interpreted easily and
can be implemented by security devices (More et al., 2020). CEF can make the analysis process more efficient, enable
easier log integration, and speed up the identification of security threats when compared to manual methods (Buczak et
al., 2017).

This research applies the AES and Twofish algorithms to encrypt network logs formatted using the Common Event
Format (CEF) as a structured log standard. The AES and Twofish algorithms were chosen because they are both known
for their high level of security, as well as good efficiency in handling large amounts of data. CEF was used in this
research because it provides a consistent structure and facilitates integration with various other security systems. This
research aims to test whether the use of these two algorithms can improve the security of network logs and how they
perform in terms of encryption speed, file size after encryption, and CPU resource usage. The results of this study are
expected to provide insight into the effectiveness of network log encryption in maintaining the confidentiality and
integrity of sensitive information on computer networks that use the CEF log format.

2. Literature Review

Several previous studies have examined the application of encryption to enhance the security of network logs.
Research conducted by (Lantz, 2006) demonstrates that applying encryption to network logs can significantly elevate
the level of protection. The encryption process renders network logs difficult to read or manipulate by unauthorized
parties, making it challenging for hackers to access or alter log data without the appropriate encryption key.

Further, (Dzikri Azhari et al., 2024), explored the use of the AES encryption algorithm with a 128-bit key on network
log files formatted in Common Event Format (CEF). Their findings indicate that this approach effectively ensures the
confidentiality and integrity of network log data. The study utilized a robust encryption key that combined uppercase
letters, lowercase letters, numbers, and special characters to strengthen the security of both encryption and decryption
processes. The incorporation of CEF format is recognized as beneficial for facilitating more effective security analysis
of recorded network activities.

Moreover, research by (Praptodiyono et al., 2021) investigates the performance of both the AES and Twofish
algorithms in securing data on networks. Their results highlight that while AES exhibits advantages in terms of
computation time and memory efficiency, Twofish offers benefits such as smaller encrypted file sizes and reduced CPU
usage. The study concludes that despite AES's superiority in speed and efficiency, Twofish provides a more compact
data size along with enhanced security features.

Research (Buczak et al., 2017), further examined the advantages of using CEF in network log security. Their study
illustrates that CEF allows for easier integration of logs and expedites the identification of security threats compared to
traditional manual methods. The results indicated that a cyber analyst utilizing CEF could focus on less than 0.4% of all
IP addresses to identify all malicious IPs, thereby increasing the efficiency of the log analysis process.

Overall, these studies collectively underscore the importance of encryption and the utilization of standardized formats
like CEF in bolstering the security and integrity of network logs, thereby providing a robust framework for ongoing
research in this field.

3. Materials and Methods

There are several stages in this research. The first stage is the collection of network log data. The second stage
involves the application of the Common Event Format (CEF) to the collected log data. The third stage is the encryption

343 Ali et al / International Journal of Quantitative Research and Modeling, Vol. 5, No. 3, pp. 341-353,

process using the AES algorithm. The fourth stage is the decryption of the data that has been encrypted with AES. After
that, the fifth stage is the encryption process using the Twofish algorithm. The sixth stage is the decryption of the data
encrypted with Twofish. The final stage involves the evaluation and testing of the results from both encryption and
decryption processes, as can be seen in Figure 1.

Figure 1: Research Method Flow

3.1. Materials

The data used in this study consists of network log entries collected in the Common Event Format (CEF). The logs
are sourced from a third-party application, Wireshark, resulting in a dataset comprising network traffic data stored in
PCAP files. The initial dataset includes various attributes such as source IP addresses, destination IP addresses, source
ports, destination ports, timestamps, and descriptive messages.

3.2. Methods

3.2.1. Network Log Data Collection

The first step undertaken in this research is the collection of network log data. In this stage, gathering sufficient and
relevant network log data is crucial as it serves as the input for the subsequent application of the Common Event Format
(CEF) and data encryption processes. The network log data used in this research is acquired through third-party
software, specifically Wireshark, which captures the data in PCAP file format. This raw log data is essential for
analyzing network activities and will undergo further formatting and encryption to enhance its security and facilitate
efficient analysis.

344 Ali et al / International Journal of Quantitative Research and Modeling, Vol. 5, No. 3, pp. 341-353,

3.2.2. Application of CEF

The next step is the application of the Common Event Format (CEF), which plays a key role in standardizing and
structuring the network log data. By using CEF, network log formats become more accessible and manageable for
network analysts. This format not only improves the efficiency of reading and interpreting log data but also provides a
structured framework to solve network issues. At this stage, the logs generated from PCAP files are converted into the
CEF format.

The purpose of implementing CEF is to standardize the network log format, making it easier to analyze. In practice,
each generated log will follow the CEF structure, which consists of a header and an extension. The header contains
basic information such as the CEF version, source device, and priority, while the extension includes specific details
about the log event. In this research, the network log data to be converted into the CEF format is extracted from PCAP
file types.

The first step in applying CEF is to identify the log source to be integrated into the CEF format. Once the log source
is identified, the next step is to extract key information from the logs, including the source IP address (src), destination
IP address (dst), source port (spt), destination port (dpt), start time (start), end time (end), and a descriptive message
(msg). The next step is to create the CEF header, beginning with selecting the appropriate CEF version. Vendor, product,
product version, event signature ID, brief event description, and severity level are then added to the header. An example
of a CEF header is as follows: CEF:0|MyCompany|MyProduct|1.0|100|TCP Traffic|3|.
Once the header is created, the next step is to organize the extension part of the CEF log. The extension contains key-

value pairs that provide additional details about the event. The previously extracted information is added to the extension
in the appropriate format. An example of an extension is as follows: src=142.250.115.157 dst=10.8.3.101 spt=443
dpt=49725 start=2023-08-03T22:46:25Z end=2023-08-03T22:46:25Z msg=TCP Traffic from 142.250.115.157 to
10.8.3.101 on ports 443 49725.

The final step is to combine the header and extension to form a complete log entry in CEF format. An example of a
complete log entry combining the header and extension would look like this:
CEF:0|MyCompany|MyProduct|1.0|100|TCP Traffic|3|src=142.250.115.157 dst=10.8.3.101 spt=443 dpt=49725
start=2023-08-03T22:46:25Z end=2023-08-03T22:46:25Z msg=TCP Traffic from 142.250.115.157 to 10.8.3.101 on
ports 44349725. The output of this process is stored as a text file containing network log data in CEF format.

Through this structured CEF implementation process, network log analysis becomes more effective because the data
produced is more consistent and organized. This allows network analysts to quickly identify and respond to security
threats, as well as resolve potential issues within the network. The implementation of CEF not only enhances operational
efficiency but also improves the overall security level of the network by providing a robust framework for log
management and security analysis.

3.2.3. AES Encryption

The next step is the encryption process using the AES algorithm. After the network log data has been formatted into
CEF, this step involves applying the AES algorithm to encrypt the network log data. This process converts the original
log data, now in CEF format (plaintext), into an encrypted form (ciphertext).

The AES encryption process begins with the generation of a 128-bit (16-byte) symmetric encryption key, which will
be used to both encrypt and decrypt the network log data. The network log data to be encrypted is the previously
formatted CEF data stored in a text file. The log data, formatted in the Common Event Format (CEF), is divided into
128-bit data blocks. If the data size is not a multiple of 128 bits, padding is added to fill the gap.

In the initial phase, each data block is combined with the encryption key using an XOR operation, in a step known
as AddRoundKey. The data blocks then go through nine main rounds, each consisting of four stages. The first stage is
SubBytes, where each byte in the data block is replaced with another byte using a substitution table (S-box) to provide
strong non-linearity in the encryption. Next is ShiftRows, in which the rows of the data block are cyclically rotated to
increase diffusion within the block. Then comes MixColumns, where the columns of the data block are mixed using a
linear mathematical transformation. Finally, AddRoundKey is applied again, where a specific round key is combined
with the data block using an XOR operation.

In the final round, the same three stages (SubBytes, ShiftRows, and AddRoundKey) are performed, but the
MixColumns stage is omitted to simplify the decryption process.

Once all the rounds are completed, the encrypted data blocks (ciphertext) are recompiled into a single encrypted file.
The encryption process will include metrics such as the time required, the file size after encryption, and CPU usage
during the encryption process. This information will be displayed in the encryption results message, along with a
download button to retrieve the encrypted AES file and the key used.

Through this encryption process, sensitive network log data is well protected, preserving its integrity and
confidentiality from unauthorized access. The security of AES-128, stemming from its complex transformations and
the use of a strong encryption key, ensures that the data is not easily compromised by unauthorized parties.

345 Ali et al / International Journal of Quantitative Research and Modeling, Vol. 5, No. 3, pp. 341-353,

3.2.4. AES Decryption

After the network log data has been encrypted using the AES algorithm, the next step is the decryption process to
restore the encrypted data back to its original form (plaintext). The AES decryption process follows the same method
as encryption but with the steps in reverse order. Decryption is performed by uploading the previously encrypted file
along with the key used during the prior encryption process.

The decryption process begins by taking the encrypted network log file (ciphertext) and splitting it back into 128-bit
data blocks. Each data block then undergoes decryption rounds that consist of steps opposite to those of encryption. In
the first round, the data block goes through three stages: AddRoundKey, where the data block is combined with the last
round key using an XOR operation. Next is InvShiftRows, where the rows in the data block are rotated back to their
original positions. Then, InvSubBytes is applied, where each byte in the data block is replaced with the original byte
using the inverse substitution table (inverse S-box).

Following this, the data block goes through nine main decryption rounds, which include four stages: AddRoundKey,
where the data block is combined with the corresponding round key; InvMixColumns, where the columns of the data
block are mixed using the inverse linear mathematical transformation; InvShiftRows, where the rows in the data block
are rotated back to their original positions; and finally, InvSubBytes, where each byte in the data block is replaced with
the original byte using the inverse S-box. In the final round, only three stages are performed (AddRoundKey,
InvShiftRows, and InvSubBytes), with the InvMixColumns stage omitted.

Once all the rounds are completed, the decrypted data blocks (plaintext) are recompiled into a single complete
network log file. If any padding was added during the encryption process, it will be removed to restore the data to its
original form. The decryption process will include metrics such as the time taken, the file size after decryption, and
CPU usage during the decryption process. This information will be displayed in the decryption results message, along
with a download button to retrieve the decrypted AES file.

This decryption process ensures that the encrypted network logs can be accessed again in their original form,
maintaining the confidentiality and integrity of the information. By following the proper decryption steps, the system
ensures that only authorized parties can access the network log data, thereby enhancing the overall security of the
network log system.

3.2.5. Twofish Encryption

The next stage involves the data encryption process using the Twofish algorithm. In addition to AES encryption, the
network log data that has been formatted in CEF will also undergo encryption with Twofish. The encryption process
with Twofish begins with the generation of a 128-bit symmetric encryption key, which will be used for encrypting and
decrypting the network log data. The network log data to be encrypted consists of files formatted in CEF with a txt file
type. The CEF-formatted network log data is then divided into 128-bit data blocks. If the data size is not a multiple of
128 bits, padding will be added to fill the gaps.

In the first step, each data block is XORed with the encryption key in a stage known as initial Key Whitening. Each
data block then undergoes 16 encryption rounds, consisting of several main stages. Each round begins by splitting the
block into two parts: left and right. The left part is operated on by the function g, which includes byte substitution
through the S-box, linear mixing based on the MDS matrix, and the Pseudo-Hadamard Transform (PHT). The output
of this function g is then XORed with the two right parts and shifted for further diffusion.

After all rounds are completed, the processed data block is XORed again with the encryption key in the final Key
Whitening stage. The final output of the encryption process is the encrypted network log data file. The encrypted data
blocks are then recompiled into a single complete encrypted file. The encryption process will include metrics such as
the time taken, the file size after encryption, and CPU usage during the encryption process. This information will be
displayed in the encryption results message, along with a download button to retrieve the encryption key file and the
Twofish encrypted file.

Through this encryption process, sensitive network log data will be well-protected, maintaining the integrity and
confidentiality against unauthorized access. The security of the Twofish algorithm, derived from its 16-round Feistel
structure and the use of a strong key, ensures that the data is not easily compromised by unauthorized parties.

3.2.6. Twofish Decryption

After the network log data has been encrypted using the Twofish algorithm, the next step is the decryption process.
The encrypted log data will be restored to its original form using the Twofish algorithm. The Twofish decryption process
follows the same method as encryption, but with the steps in reverse order. Decryption is performed using the same key
that was used in the encryption process, ensuring that only parties with the correct key can access the original data.

The decryption process begins by taking the previously encrypted network log file (ciphertext) and dividing it back
into 128-bit data blocks. In the first step of decryption, each block is XORed with the encryption key in the initial Key
Whitening stage. Each data block then undergoes 16 decryption rounds, which are the inverse of the encryption rounds.
Each round starts by splitting the block into two parts: left and right. The left part is operated on by the same function
g as in encryption, and the result is XORed with the right parts and shifted back to its original position.

346 Ali et al / International Journal of Quantitative Research and Modeling, Vol. 5, No. 3, pp. 341-353,

After completing the 16 rounds, the processed data block is XORed again with the encryption key in the final Key
Whitening stage. The final output of this decryption process is the network log file restored to its original form. The
decrypted data blocks are then recompiled into a single complete network log file. If any padding was added during the
encryption process, it will be removed to restore the data to its original state.

The decryption process will include metrics such as the time taken, the file size after decryption, and CPU usage
during the decryption process. This information will be displayed in the decryption results message, along with a
download button to retrieve the Twofish decrypted file. This decryption process ensures that the encrypted network logs
can be accessed again in their original form, maintaining the confidentiality and integrity of the information. If the
decryption steps are correctly followed, the system ensures that only authorized parties can access the network log data,
enhancing the overall security of the network log system.

3.2.7. Evaluation and Testing

The last step in this research is result evaluation and testing. Testing is done by measuring the performance of each
algorithm used, namely AES and Twofish, namely by comparing the file size before and after the encryption and
decryption process, measuring the speed of the time required for the encryption and decryption process of the two
methods and also by comparing cpu usage when the encryption and decryption process is carried out in both methods.
The results of this evaluation will show which algorithm is more effective based on file size efficiency and processing
speed.

4. Results and Discussion

This research produced a web application that displays the application of the CEF format, as well as an easy-to-
follow encryption and decryption process. The application includes features such as PCAP file upload, conversion to
CEF format, file encryption using AES, file decryption using AES, file encryption using Twofish, file decryption using
Twofish, and performance testing.

4.1. Network Data Log Collection

Network log data collection begins with the selection of the network interface to be monitored and the start of the
data capture process. Every data packet that passes through the interface is logged, including important information
such as source and destination IP addresses, source and destination ports, and the type of protocol used. After the data
collection period ends, the capture process is stopped and the results are saved in PCAP (Packet Capture) format, which
can be seen in Figure 2.

Figure 2: Network Log Collection

4.2. Application of CEF Format

The process of implementing the CEF format begins with uploading a PCAP file that contains the network log. The
log file is then converted to the CEF format, which structures the network log data to be more structured and easy to
understand. Once the conversion is complete, the results will be displayed and can be downloaded as a .txt file, as seen
in Figure 3.

347 Ali et al / International Journal of Quantitative Research and Modeling, Vol. 5, No. 3, pp. 341-353,

Figure 3: CEF Deployment Process

Once the network logs are converted to CEF format, the data will be organized following a uniform standard, making
integration with other security analysis systems easier. An example of data that has been converted to CEF format can
be seen in Figure 4.

Figure 4: CEF Format Implementation Result

4.3. AES Encryption

The encryption process begins by uploading a .txt file containing network logs that have been formatted in CEF. The
data in the file is then converted into ciphertext, which is a random message that cannot be read by parties without the
encryption key, thus ensuring the protection of sensitive information. Once the encryption is complete, the result will
display information such as the file size after encryption, the time taken for the encryption process, as well as the CPU
usage during encryption using the AES algorithm. The encrypted file and the key used can also be downloaded, as
shown in Figure 5.

Figure 5: AES Encryption Process

Once the encryption process is complete, the data in the text file is converted into a random message that cannot be

348 Ali et al / International Journal of Quantitative Research and Modeling, Vol. 5, No. 3, pp. 341-353,

accessed without the encryption key. An example of the result of this encryption can be seen in Figure 6.

Figure 6: AES Encryption Result

4.4. AES Decryption

The decryption process will restore the file that has been encrypted with the AES algorithm to its original form so
that it can be accessed and read again. This step is done by uploading the encrypted file as well as the key obtained
during the previous encryption process. After that, the file will be decrypted and restored to its original form. After the
decryption is complete, information such as the file size after decryption, the time taken, and CPU usage during the
decryption process with AES will be displayed. The decrypted file in .txt format can also be downloaded, as shown in
Figure 7.

Figure 7: AES Decryption Process

After the decryption process is complete, it will ensure that the initially unreadable data is restored to its original
form, as shown in Figure 8, where the original information can be accessed again using the right key.

349 Ali et al / International Journal of Quantitative Research and Modeling, Vol. 5, No. 3, pp. 341-353,

Figure 8: AES Decryption Result

4.5. Twofish Encryption

The encryption process with the Twofish algorithm is used to secure network logs that have been formatted in CEF
to improve information security. Encryption begins by uploading a .txt file of network logs that have been formatted in
CEF. The data in the file is then converted into ciphertext, which is a random message that cannot be read without an
encryption key, thus ensuring the protection of sensitive information. Once the encryption process is complete, the
result will display information such as the file size after encryption, the duration of encryption, as well as the CPU usage
during the encryption process with Twofish. In addition, the encrypted file and the key used for encryption can be
downloaded, as shown in Figure 9.

Figure 9: Twofish Encryption Process

Once the encryption with Twofish is complete, the text data in the file will turn into a random message that cannot
be accessed without the encryption key. An example of the result of this encryption can be seen in Figure 10.

Figure 10: Twofish Encryption Result

4.6. Twofish Decryption

The decryption process with the Twofish algorithm serves to restore files that have previously been encrypted, so
that they can be accessed or read back in plaintext form. This step is done by uploading the encrypted file and the key
obtained during the previous encryption process. After that, the successfully decrypted file will return to its original
format. When the decryption is complete, information such as the file size after decryption, process duration, and CPU
usage during decryption with Twofish will be displayed. The decrypted file in .txt format can also be downloaded, as
shown in Figure 11.

350 Ali et al / International Journal of Quantitative Research and Modeling, Vol. 5, No. 3, pp. 341-353,

Figure 11: Twofish Decryption Process

Once the decryption process with Twofish is complete, the initially unreadable data is restored to its original form
and can be accessed using the correct key. An example of this decryption result can be seen in Figure 12.

Figure 12: Twofish Decryption Result

4.7. Performance Testing

Performance testing was conducted to measure the efficiency and speed of the AES and Twofish encryption and
decryption algorithms. In addition, CPU usage measurements were also taken to assess how much processor resources
were used during the encryption and decryption process. This test involved 5 files of varying sizes to see how each
algorithm handled the encryption and decryption process.

4.7.1. Testing the Encryption Process

Testing is done by measuring the time required to encrypt files of various sizes using the AES and Twofish
algorithms. In addition, the file size before and after encryption as well as the encryption process time was recorded.
To get a more complete picture of the efficiency of the algorithms, CPU usage was also measured during the encryption
process, the test results can be seen in Table 1.

351 Ali et al / International Journal of Quantitative Research and Modeling, Vol. 5, No. 3, pp. 341-353,

Processing Time

Processing Time

Table 1: Encryption Process Testing

File Size

File Size After Encryption
Encryption

 CPU Usage

From the test results, it can be seen that the AES algorithm is consistently faster in performing the encryption process

compared to the Twofish algorithm. Although the file size after encryption is relatively the same for both algorithms,
the time taken by Twofish is much longer than AES, especially as the file size increases. This shows that AES is more
efficient in terms of encryption processing time. In addition, the CPU usage by AES is also lower compared to Twofish,
confirming that AES is not only faster but also more efficient in the use of CPU resources during the encryption process.

4.7.2. Testing the Decryption Process

Testing is done by measuring the time taken to decrypt files of various sizes using the AES and Twofish algorithms.
In addition, the file size before and after decryption as well as the decryption process time are recorded. To get a more
complete picture of the efficiency of the algorithms, CPU usage was also measured during the decryption process, the
test results can be seen in Table 2.

File Size

Table 2: Decryption Process Testing

File Size After Decryption
Decryption

CPU Usage

From the decryption test results, it can be seen that the AES algorithm is also faster than the Twofish algorithm in

performing the decryption process. Twofish's decryption time is much longer than AES, especially for large files. This
shows that AES is not only faster in the encryption process but also more efficient in the decryption process. In addition,
the CPU utilization by AES is also lower than that of Twofish, which confirms that AES is more efficient in utilizing
CPU resources during the decryption process.

5. Conclussion

Based on the results of the research conducted, it can be concluded that the encryption and decryption system
developed in this research successfully implements the Advanced Encryption Standard (AES) and Twofish algorithms
to secure network log data with Common Event Format (CEF). The system is designed so that network log data stored
or sent to any platform remains secure by changing the contents of the data. Even if the data is successfully retrieved
by unauthorized parties, they will not be able to open it without the appropriate key. The performance test results show
that the AES algorithm is faster in performing the encryption and decryption process than Twofish. The average time
taken for encryption from testing 5 different files with varying sizes was 2.1386 seconds for AES, while for Twofish it
was 22.8372 seconds. In the decryption process too, the average time taken by AES was 2.451 seconds, while Twofish
required 26.140 seconds. The file size after encryption is relatively the same for both algorithms. Also, in terms of CPU
usage, the AES algorithm shows higher efficiency. The average CPU usage for encryption with AES is 0.5558%, while
for Twofish it is 23.2904%. For decryption, the average CPU usage with AES is 0.4682%, while with Twofish it is
13.7598%. This confirms that AES is not only faster in encryption and decryption but also more efficient in CPU
resource usage.

 AES (bytes) Twofish
(bytes)

AES
(sec)

Twofish
(sec)

AES
(%)

Twofish
(%)

15.4 MB 16.192080 16.192064 0.091 5.223 0.093 5.578

19.2 MB 20.220400 20.220384 0.131 6.290 0.140 6.703

58.2 MB 61.103696 61.103680 1.200 20.588 0.5 21.609

86.5 MB 90.755264 90.755248 2.755 32.051 0.75 33.484

148 MB 156.167712 156.167696 6.516 50.034 1.296 51.078

 Average 2.1386 22.8372 0.5558 23.6904

 AES (bytes) Twofish
(bytes)

AES
(sec)

Twofish
(sec)

AES
(%)

Twofish
(%)

16.2 MB 16.192051 16.192051 0.083 4.864 0.093 28.9

20.2 MB 20.220369 20.220369 0.126 6.052 0.125 0.699

61.1 MB 61.103664 61.103664 1.629 25.677 0.421 20.7

90.7 MB 90.755239 90.755239 4.092 35.584 0.687 5.5

156.1 MB 156.167680 156.167680 6.323 58.522 1.015 13.0

 Average 2.451 26.140 0.468 13.760

352 Ali et al / International Journal of Quantitative Research and Modeling, Vol. 5, No. 3, pp. 341-353,

Acknowledgments

The authors would like to express their deepest gratitude to Mr. Asep Id Hadiana and Ms. Melina, who have provided

invaluable guidance and support throughout this research. Their insights and inputs were crucial in shaping the direction

and quality of this research. The authors would also like to thank the Department of Informatics, Universitas Jenderal

Achmad Yani, Cimahi, for providing the necessary facilities and resources to conduct this research. Finally, sincere

appreciation is given to all parties who have contributed in any form to the completion of this project.

References

Akhriana, A., & Irmayana, A. (2019). Web App for Detecting Types of Computer Network Attacks by Utilizing Snort and

Honeypot Logs. CCIT, 12(1), 87–98.

Alamsyah, H., -, R., & Al Akbar, A. (2020). Network Security Analysis Using Network Intrusion Detection and Prevention

System. JOINTECS (Journal of Information Technology and Computer Science), 5(1), 17.

https://doi.org/10.31328/jointecs.v5i1.1240

Buczak, A. L., Berman, D. S., Yen, S. W., Watkins, L. A., Duong, L. T., & Chavis, J. S. (2017). Using sequential pattern mining

for common event format (CEF) cyber data. ACM International Conference Proceeding Series.

https://doi.org/10.1145/3064814.3064822

Budi, E., Wira, D., & Infantono, A. (2021). Strategy to Strengthen Cyber Security to Realize National Security in the Era of

Society 5.0. Prosiding Seminar Nasional Sains Teknologi Dan Inovasi Indonesia (SENASTINDO), 3(November), 223–234.

https://doi.org/10.54706/senastindo.v3.2021.141

Dzikri Azhari, M., Hadiana, A. I., & Melina, M. (2024). DATA SECURITY TECHNIQUES USING ADVANCE ENCRYPTION

STANDARD ALGORITHM WITH COMMON EVENT FORMAT TO IMPROVE NETWORK LOG SECURITY. 7.

Lantz, B. (2006). Locking Down Log Files: Enhancing Network Security By Protecting Log Files. Issues In Information Systems,

VII(2), 43–47. https://doi.org/10.48009/2_iis_2006_43-47

Melina, M., Sukono, F., Napitupulu, H., & Kusumaningtyas, V. A. (2022). Electronic Signature Verification with Authentication

Technique Based on Public Key Cryptography System Using Rivest-Shamir-Adleman Cryptographic Algorithm. Jurnal

Matematika Integratif, 18(1), 27. https://doi.org/10.24198/jmi.v18.n1.38343.27-39

More, S., Jamadar, I., & Kazi, F. (2020). Security Visualization and Active Querying for OT Network. 2020 11th International

Conference on Computing, Communication and Networking Technologies, ICCCNT 2020.

https://doi.org/10.1109/ICCCNT49239.2020.9225275

Nurnaningsih, D., & Permana, A. A. (2018). Design of Data Security Application with Advanced Encyption Standard Algorithm

(Aes). Jurnal Teknik Informatika, 11(2), 177–186. https://doi.org/10.15408/jti.v11i2.7811

Nyoman Putri Purnama Santhi, N., & Nengah Nuarta, I. (2023). Strengthening Police Law Enforcement in Order to Optimize

Cybercrime Countermeasures in Indonesia. SCIENTIA: Journal of Multi Disciplinary Sciences, 02(1), 15–27.

Praptodiyono, S., Muhammad, F., & Wiriyadinata, D. (2021). Analysis security system performance MIPv6 in signaling process

using AES and Twofish algorithms. Teknika: Jurnal Sains Dan Teknologi, 17(2), 158.

https://doi.org/10.36055/tjst.v17i2.13069

Proceedings - 2011 International Conference on Communication Systems and Network Technologies, CSNT 2011, 76–79.

https://doi.org/10.1109/CSNT.2011.160

Putra, W., Fahlevi, M. R., & Hidayat, A. T. (2023). Implementation of Advanced Encryption Standard Algorithm for Document

Security, Teknologi Dan Informasi, 1(2), 76–83.

https://journal.grahamitra.id/index.php/jurikti/article/view/55%0Ahttps://journal.grahamitra.id/index.php/jurikti/article/dow

nload/55/181

Ramli, M., Soewito, B., Universitas, B., Nusantara, J., Raya, K., Jeruk, N., 27, K., Kebon Jeruk, K., & Jakarta, B. (2023).

Network Security Monitoring and Evaluation with System Information and Security Management (SIEM) Approach.

Faktor Exacta, 16(1), 1979–276. https://doi.org/10.30998/faktorexacta.v16i1.16534

Rizvi, S. A. M., Hussain, S. Z., & Wadhwa, N. (2011). Performance analysis of AES and Twofish encryption schemes.

353 Ali et al / International Journal of Quantitative Research and Modeling, Vol. 5, No. 3, pp. 341-353,

Samad, M. Y., & Pratama Dahlian Persadha. (2022). Understanding Cyber Warfare and the Role of the National Intelligence

Agency in Countering Cyber Threats. JURNAL IPTEKKOM Jurnal Ilmu Pengetahuan & Teknologi Informasi, 24(2), 135–

Sapegin, A., Jaeger, D., Azodi, A., Gawron, M., Cheng, F., & Meinel, C. (2014). Normalisation of Log Messages for Intrusion

Detection. Journal of Information Assurance and Security, 9(3), 167–176.

