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Abstract 

In this era of rapid technological advancement, various sectors are experiencing changes, one of which is investment. Investors are 

starting to turn their attention to technology sector stocks as new investment targets. However, investments are inherently linked to 
return and risk levels and stock prices can be highly volatile. Therefore, forming an optimal investment portfolio is very important 

to achieve a balance between return and risk. In addition, coping with volatile stocks is also very important. The ARIMA-GARCH 

time series model is a method that can be used to deal with such volatility. A popular strategy for portfolio optimization is to use 

the Mean-Variance model, also known as the Markowitz model. This study aims to form an optimal portfolio consisting of five 

technology sector stocks in Indonesia with the codes AXIO, DIVA, EDGE, MCAS, and CASH using the Mean-Variance model 

with assets-liabilities equipped with the ARIMA-GARCH approach. Based on the results of the study, the optimal portfolio is 

obtained with the composition of each weight is 23.16% of the capital allocated to AXIO; 2.95% for DIVA; 56.48% for EDGE; 

6.36% for MCAS; and 11.05% for CASH. The weight allocation composition can generate a portfolio return of 0.0066 and a 

variance (risk) return of 0.0082. 
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1. Introduction  

The rapid development of technology and information in this era of globalization has increased competitiveness in 
various commercial sectors, as well as having an impact on other fields such as social, educational, political culture, and 
economic fields (Oktavia & Nirawati, 2022). This can be an opportunity for investors to make big profits by investing 
in technology stocks because when investing capital, investors will definitely choose a business that is believed to be 
profitable (Wahdania et al., 2023). 

One method for forming a portfolio is Mean-Variance, which is a method that gathers several assets with the aim of 
maximizing profits and reducing risk (Majidah et al., 2024). The Mean-Variance model solves the portfolio optimization 
problem by forming the set of optimal portfolios that provide the highest rate of return for a given level of risk or the 
lowest risk for a given level of return (Kim, 2021). 

The most widely used statistical technique for analyzing data that is based on past values of the time series along with 
the previous error term for estimation is the Autoregressive Integrated Moving Average (ARIMA) model. Meanwhile, 
to overcome volatility, one model that can be used is the Generalized Autoregressive Correlation Heteroscedasticity 
(GARCH) model (Kaur & Singla, 2022). Forecasting returns with homoskedastic variance can be described using the 
ARIMA model, while returns with heteroskedastic variance can be described using the ARIMA-GARCH model 
(Talumewo et al., 2023). 

There are several previous studies in recent years that are relevant to this research. Soeryana et al., (2017) conducted 
research on investment portfolio optimization by applying mean-variance optimization techniques using the ARMA 
model for non-constant mean and GARCH for non-constant volatility, as well as the Lagrangian multiplier method to 
optimize the portfolio. The study used five stocks and obtained the result that the optimal portfolio composition provides 
a balanced risk and return ratio, with certain weights allocated to each stock. In addition, research by Lesman et al., 
(2017) discusses stock portfolio optimization using the mean-variance model by considering asset liabilities and asset 

https://ijqrm.rescollacomm.com/
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returns estimated using the ARMA-GARCH model, the results obtained offer the best balance between maximizing 
returns and minimizing risk, thus providing valuable insight for investment decisions. 

Based on previous research, this research discusses the topic of optimizing the technology sector stock portfolio using 
the Mean-Variance model with assets-liabilities based on the ARIMA-GARCH approach. The difference between this 
research and previous research lies in the object of research. This research aims to enable investors to better manage 
stock portfolios in the technology sector and produce optimal portfolios. 

2. Literature Review 

2.1 Investment 
 Investment is the investment of capital or money that is planted to be used as capital with the aim of obtaining benefits 
in the future. Investments are made generally to get profit or income from a business. Investing can also help in planning 
for future dependents, such as education and health (Heradhyaksa, 2022). Choosing to invest basically means managing 
money in a certain period of time, namely long or short term. Investors are expected to make thorough calculations that 
can optimize profits at certain risks before making an investment (Bangun et al., 2012). 
 
2.2 Asset Return 

 Return is the financial gain derived from an investment made by a person, organization, or business. The amount 

of asset return can be determined by equation (1) (Tsay, 2005). 

𝑟𝑡 = ln𝑃𝑡 −ln 𝑃𝑡−1 , (1) 

with, 

𝑟𝑡: asset-liability return at time 𝑡 (𝑡 = 1,… , 𝑛), 

𝑃𝑡: the price or value of an asset-liability at time 𝑡 (𝑡 = 1,… , 𝑛), 

𝑛: number of observed data. 
 
2.3 Stationary 
 Stationary observational data is data that has fixed statistics and does not change over time (Cryer & Chan, 2008). 
It indicates that the mean and variance are constant over time (E. P. Box et al., 2015). The ADF test is one of the 
statistical tests to test the stationarity of data against the mean. The ADF test hypotheses are: 

𝐻0: 𝛿 = 0 (data is non-stationary), 

𝐻1: 𝛿 < 0 (data is stationary). 

The test statistic used is: 

𝑡 =
�̂�

𝑆𝐸(�̂�)
, (2) 

with, 

�̂� : least squares estimate of 𝛿, 

𝑆𝐸(�̂�) : standard error of �̂�. 

The test criteria is to reject 𝐻0 if |𝑡ℎ𝑖𝑡𝑢𝑛𝑔| > 𝑡(𝛼,𝑛) or p-value < 𝛼. 

 Box-Cox transformation is a transformation method to achieve constant variance with the parameter λ. A rounded 

value (λ) of 1 indicates that the data is stationary with respect to variance. Otherwise, Box-Cox transformation needs to 

be performed. The Box-Cox transformation is defined by the equation (3) (Wei, 2006). 

𝑇(𝑍𝑡) = {
𝑍𝑡

𝜆 − 1

𝜆
,   𝜆 ≠ 0

ln 𝑍𝑡 , 𝜆 = 0 

 (3) 

with,  

𝑇(𝑍𝑡) : Box-Cox transformation 

𝑍𝑡 : observation value at time 𝑡, 

𝜆  : transformation parameter. 
 
2.4 ARIMA Model 
 The Autoregressive Integrated Moving Average (ARIMA) model is a commonly used model in time series analysis 
introduced by Box and Jenkins in 1970. This model combines elements from the Autoregressive (AR) model, Integrated 
(I) which represents differencing, and the Moving Average (MA) model (Wang, 2024). The ARIMA model has white 
noise assumptions, meaning that there is no autocorrelation and is normally distributed with zero mean and constant 
variance, which can be written as {𝑒𝑡} ~

𝑖𝑖𝑑
 𝑁(0,𝜎2) (Tsay, 2005). 

The Autoregressive Integrated Moving Average (ARIMA) model is used to analyze and forecast data with non-

stationary patterns, so it is necessary to do differencing first and then combine it with AR and MA models. The general 

form of the ARIMA(𝑝, 𝑑, 𝑞) model is written in equation (4) (Wei, 2006). 
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𝜙𝑝(𝐵)(1 − 𝐵)𝑑𝑍𝑡 = 𝜇 + 𝜃𝑞(𝐵)𝑒𝑡 , (4) 

with, 

𝜙𝑝(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵
2 − ⋯− 𝜙𝑝𝐵𝑝 , 

𝜃𝑞(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵
2 − ⋯− 𝜃𝑞𝐵

𝑞 , 

𝑍𝑡 : observation at time 𝑡, 

𝜇 : intercept, 

𝜙𝑝(𝐵) : autoregressive (AR) operator, 

𝜃𝑞(𝐵) : moving average (MA) operator, 

𝑝 : autoregressive (AR) order, 

𝑑 : orde differencing orde (I), 

𝑞 : moving average (MA) order, 

𝑒𝑡 : residual at time 𝑡, 

𝐵 : back shift operator. 

 
2.5 ARIMA Model Identification 

ARIMA model identification can be done by looking at the Autocorrelation Function (ACF) and Partial Autocorrelation 

Function (PACF) correlograms. ACF is a function used to measure the autocorrelation of each observation with the 
previous value at various lags. ACF is defined in equation (5) (Wei, 2006). 

�̂�𝑘 =
𝛾𝑘

𝛾0
=

∑ (𝑍𝑡 − �̅�)𝑛−𝑘
𝑡=1 (𝑍𝑡+𝑘 − �̅�)

∑ (𝑍𝑡 − �̅�𝑛
𝑡=1 )

, 𝑘 = 0,1,2, … (5) 

with, 

�̂�𝑘 : the estimated ACF at lag 𝑘, 

𝛾𝑘  : the estimated autocovariance at lag 𝑘, 

�̅� : mean observation score. 

PACF is a function used to identify the autocorrelation between two observation values at different lags after removing 
the influence of previous lags. PACF is defined in equation (6). 

�̂�𝑘+1,𝑘+1 =
�̂�𝑘+1 − ∑ �̂�𝑘,𝑗�̂�𝑘+1−𝑗

𝑘
𝑗=1

1 − ∑ �̂�𝑘,𝑗�̂�𝑗
𝑘
𝑗=1

, (6) 

with, 

�̂�𝑘+1,𝑘+1: the estimated PACF at lag (𝑘 + 1), 

�̂�𝑘,𝑗    : the estimated PACF at lag 𝑘 and lag 𝑗. 
 
2.6 Parameter Estimation of ARIMA Model 

 Maximum Likelihood Estimation (MLE) is a method that can be used to estimate model parameters with the 

principle of maximizing the likelihood function. The likelihood function of the ARMA(p,q) model can be expressed in 
equation (7) (Wei, 2006).  

𝐿(𝑒𝑡|𝜇, 𝜙𝑝 , 𝜃𝑞 , 𝜎𝑒
2) = (2𝜋𝜎𝑒

2)−
𝑛
2 exp [−

1

2𝜎𝑒
2 ∑𝑒𝑡

2

𝑛

𝑡=1

]. (7) 

 
2.7 Parameter Significance Test 
 To ensure that the model used is reliable, parameter testing is required. The parameter significance test aims to 

determine whether the model parameters significantly contribute to the model formed (8) (Soeryana et al., 2017). The 

test hypotheses used are: 

𝐻0: 𝜙𝑝 = 0 or 𝜃𝑞 = 0 (model parameters are not significant), 

𝐻1: 𝜙𝑝 ≠ 0 or 𝜃𝑞 ≠ 0 (model parameters are significant), 

The test statistics used are: 

𝑡ℎ𝑖𝑡𝑢𝑛𝑔 =
�̂�𝑝

𝑆𝐸(�̂�𝑝)
 or 𝑡ℎ𝑖𝑡𝑢𝑛𝑔 =

𝜃𝑞

𝑆𝐸(𝜃𝑞)
, (8) 

with,  

�̂�𝑝 : estimated AR model parameters of order 𝑝, 

𝜃𝑞 : estimated MA mode parameters of order 𝑞, 

𝑆𝐸(�̂�𝑝) : standard error of �̂�𝑝 , 
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𝑆𝐸(𝜃𝑞) : standard error of 𝜃𝑞 . 

The test criterion is to reject 𝐻0 when |𝑡ℎ𝑖𝑡𝑢𝑛𝑔| > 𝑡(𝛼
2
,𝑛−𝑛𝑝)

 or p-value < 𝛼. 

 
2.8 Diagnostic Test 
 Diagnostic tests are used to determine the adequacy of the model by checking whether the model assumptions are 

met. The assumption is that the residuals are white noise tested by the Ljung-Box test and normally distributed as seen 

from the visualization of the Quantile-Quantile plot (Q-Q plot) results. According to (Wei, 2006), the test hypotheses 
used are:  

𝐻0: 𝜌1 = 𝜌2 = ⋯ = 𝜌𝐾 = 0 (residuals meet white noise criteria), 

𝐻1: ∃𝜌𝑘 ≠ 0, 𝑘 = 1,2, … , 𝐾 (residuals do not meet white noise criteria). 

The test statistics used are: 

𝑄 = 𝑛(𝑛 + 2) ∑(𝑛 − 𝑘)−1�̂�𝑘
2

𝐾

𝑘=1

, (9) 

with, 

𝑛 : number of observations, 

𝑘 : lag 𝑘, 𝑘 = 1,… , 𝐾, 

𝐾 : number of lags used, 

�̂�𝑘
2 : estimated ACF squared at lag 𝑘. 

The test criterion is to reject 𝐻0, when 𝑄 ≥ 𝜒(𝛼,𝐾−𝑝−𝑞)
2  or p-value < 𝛼. 

 Q-Q plot is used to check whether the residuals are normally distributed with a graphical analysis approach. 

According to (Gio & Irawan, 2016) the assumption of normality is fulfilled if the distribution of points is very close to 

the diagonal line. Meanwhile, the assumption of normality is not fulfilled if the distribution of the dots spreads far 

(spreads winding on the diagonal line like a snake). 
 
2.9 ARCH-LM Test 

 The Autoregressive Conditional Heteroscedasticity-Lagrangian Multiplier (ARCH-LM) effect test is conducted to 

detect the presence or absence of heteroscedasticity or non-constant variance in the residuals. The test hypothesis used 
is (Tsay, 2005): 

𝐻0: 𝛼1 = 𝛼2 = ⋯ = 𝛼𝐾 = 0 (no heteroscedasticity), 

𝐻1: ∃𝛼𝑘 ≠ 0, 𝑘 = 1,2, … , 𝐾 (heteroscedasticity). 
The test statistics used are: 

𝐿𝑀 = 𝑛𝑅2, (10) 

with, 

𝑅2 : coefficient of determination, 

�̂�𝑡 : forecasting data at time 𝑡, 

The test criterion is reject 𝐻0 when 𝐿𝑀 > 𝜒(𝛼,𝐾)
2  or p-value < 𝛼. 

 
2.10 GARCH Model 

 The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) time series model is used to model the 

volatility of data that fluctuates over time, which has the assumption that the residual variance is not only influenced by 
the previous period's squared residual, but also the previous period's residual variance. This model is a development of 

the Autoregressive Conditional Heteroskedasticity (ARCH) model developed by Bollerslev in 1986. The GARCH(𝑚, 𝑠) 

model can be written as equation (11) (Tsay, 2002). 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝑒𝑡−1

2 + ⋯+ 𝛼𝑚𝑒𝑡−𝑚
2 + 𝛽1𝜎1

2 + ⋯+ 𝛽𝑠𝜎𝑡−𝑠
2  (11) 

with, 

𝜎𝑡
2 : residual variance at time 𝑡, 

𝑒𝑡−𝑚
2  : squared residuals at time (𝑡 − 𝑚), 

𝑚 : ARCH order, 

𝑠 : GARCH order, 

𝛼0 : constant, 

𝛼𝑚 : ARCH parameter at order 𝑚, 

𝛽𝑠 : GARCH parameter at order 𝑠, 

 
2.11 Parameter Estimation GARCH Model 
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 Parameter estimation of the GARCH model is done by the Maximum Likelihood Estimation (MLE) method. The 

GARCH(𝑚, 𝑠) likelihood function is expressed by the equation (12). 

𝐿(𝑒𝑡|𝛼0, 𝛼𝑚 , 𝛽𝑠 ) = ∏(2𝜋𝜎2)−
1
2 exp (−

𝑒𝑡
2

2𝜎2
)

𝑛

𝑡=1

 (12) 

 
2.12 Best Model Selection Criteria 
 For a given data set, when there are several adequate models, the selection criterion is usually based on the 
summary statistics of the residuals. One of the criteria that can be used is Akaike's Information Criterion (AIC). 
According to (Wei, 2006), the most optimal model is the one with the minimum AIC value. The AIC value is calculated 
with the following equation. 

𝐴𝐼𝐶 = 2𝑀 − 2 ln 𝐿, (13) 

with, 

𝑀 : number of parameters in the model, 

𝐿 : value of the likelihood function on the estimated parameters. 
 
2.13 Asset-Liability Model 

The asset-liability surplus return modeling at time 𝑡 = 0 is described by the following equation (Alex Keel & 

Muller, 1995). 

𝑆0 = 𝐴0 − 𝐿0 , (14) 

with, 

𝑆0 : surplus at time u 𝑡 = 0, 

𝐴0 : asset asset at time 𝑡 = 0, 

𝐿0 : liability at time 𝑡 = 0. 

The surplus obtained after one period is written as follows. 

𝑆1 = 𝐴1 − 𝐿1 = 𝐴0[1 + 𝑟𝐴] − 𝐿0[1 + 𝑟𝐿] (15) 

Suppose the surplus return is expressed as: 

𝑟𝑆 =
𝑆1 − 𝑆0

𝐴0
=

𝐴0𝑟𝐴
𝐴0

−
𝐿0𝑟𝐿
𝐴0

= 𝑟𝐴 −
1

𝑓0
𝑟𝐿 , (16) 

with, 

𝑓0 =
𝐿0

𝐴0
. 

Based on equation (16), the mean surplus return value can be calculated as follows. 

𝜇𝑆 = 𝐸[𝑟𝑆] = 𝜇𝐴 −
1

𝑓0
𝜇𝐿 , (17) 

with, 

𝜇𝑆 : mean return surplus, 

𝜇𝐴 : mean assets, 

𝜇𝐿 : mean liability. 

Also obtained the variance of surplus which can be determined by this equation. 

𝜎𝑆
2 = 𝜎𝐴

2 −
2

𝑓0
𝜎𝐴𝐿 +

1

𝑓0
2 𝜎𝐿

2, (18) 

with, 

𝜎𝑆
2 : variance of return surplus, 

𝜎𝐴
2 : varians of asset, 

𝜎𝐿
2 : varians of liability, 

𝜎𝐴𝐿  : covariance between assets and liabilities 
 
2.14 Mean-Variance Model Portfolio Optimization 

The Mean-Variance model is a tool used to optimize the weight of assets in an investment portfolio in a certain 

period. The main objective is to maximize the average return and minimize the variance of the return (Majidah et al., 
2024). The surplus return and portfolio variance can be determined by the following equations respectively. (Bakry et 
al., 2021). 

�̂�𝑆𝑝
= 𝛍𝑆

𝑇𝐰, (19) 

�̂�𝑆
2 = 𝐰𝑇𝚺𝐰, (20) 

𝛍𝑆 : mean vector of surplus returns, 
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𝑁 : number of observations, 

𝐰 : weight vector, 

𝚺 : variance-covariance matrix of surplus returns between stocks. 

In Lesman et al., (2017), referring to Panjer et al. (1998) and Bjork et al., (2005) surplus return optimization refers 

to equation (2.55), where 𝜏 is risk tolerance. The greater the risk tolerance value, the greater the investor's courage in 

facing risk.   

𝑀𝑎𝑥{2𝜏𝛍𝑇𝐰 + 2𝛄𝑇𝐰 − 𝐰𝑇𝚺𝐰}, 

𝑠. 𝑡. 𝐞𝑇𝐰 = 1 
(21) 

with, 

𝛄 : covariance vector between asset return and liability return, 

𝐞 : unit vector. 

After obtaining an efficient portfolio, the value of the ratio between return and variance is then calculated, which 

is shown in the following equation. 

𝑅𝑎𝑡𝑖𝑜 =
�̂�𝑆𝑝

�̂�𝑆
2  (22) 

 The ratio is said to be favorable when the ratio value is high, and bad when it is low. Since the ratio indicates that 
the portfolio can generate the largest return, the ratio with the highest value is chosen when determining the ideal 

portfolio. 

3. Materials and Methods  

3.1. Materials 

This study discusses the optimization of the technology sector stock portfolio. The object of research is stock price 
data of five technology companies, namely Tera Data Indonusa Tbk (AXIO), Distribusi Voucher Nusantara T (DIVA), 
Indointernet Tbk (EDGE), M Cash Integrasi Tbk (MCAS), and Cashlez Worldwide Indonesia Tb (CASH). The stock 
price data taken is the price at closing time starting from January 1, 2023 to June 30, 2024. This data is obtained from 
the website https://finance.yahoo.com/. While the liability data used is simulated data. 

3.2. Methods 

This research uses the Mean-Variance model with assets-liabilities based on the ARIMA-GARCH approach. The 
stages in conducting this research are as follows: 

1. Calculating returns from historical data  
2. Test the stationarity of return data in the mean using Augmented Dickey Fuller (ADF) and test the stationarity 

of return data in variance using Box-Cox transformation.  
3. Identify ARIMA models based on ACF and PACF plots. 
4. Calculate ARIMA model parameter estimates using the MLE method. 
5. Test the significance of parameters and diagnostic tests of ARIMA models  
6. Test the ARCH effect on model residuals.  
7. If there is a heteroscedasticity effect, identify the GARCH model using ACF and PACF.  
8. Calculate parameter estimates of the ARIMA-GARCH model using the MLE method. 
9. Test the significance of parameters and diagnostic tests of the ARIMA-GARCH model. 
10. Test the ARCH effect on model residuals. 
11. Choose the best ARIMA-GARCH model based on the smallest AIC value and forecast stock return data one 

period ahead using the best ARIMA-GARCH model for each company. 
12. Calculate the mean and variance of surplus return then form its vector and matrix. 
13. Optimization of return surplus, where the value of 𝜏 is simulated gradually from 0, with an increase of 0.01. 

4. Results and Discussion 

4.1 Company Stock Data 
Descriptive statistics are used to provide an overview of the characteristics of research data before further analysis 

is carried out. Through descriptive statistics, various important aspects of the data can be known, such as distribution, 

central tendency, and variability. In this study, 349 closing stock price data were analyzed to understand their patterns 

and characteristics. As an illustration, the following is a plot of AXIO stock data as an example of the dataset used.  
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Figure 1: Plot of AXIO Closing Price 

The data is used to calculate asset returns based on equation (1). The following is the calculation of return from the 
daily closing stock price for AXIO. The asset return plot for AXIO stock is presented in figure 2. 

For 𝑡 = 1, 𝑃1 = 234, and assumed 𝑃0 = 234, 

𝑟1 = ln(𝑃1) − ln(𝑃0) = ln(234) − ln(234) = 0. 

For 𝑡 = 2, 𝑃2 = 244, and 𝑃1 = 234, 

𝑟2 = ln(𝑃2) − ln(𝑃1) = ln(244) − ln(234) = 0.0418. 

⋮ 

For 𝑡 = 349, 𝑃349 = 179, and 𝑃348 = 176, 

𝑟349 = ln(𝑃349) − ln(𝑃348) = ln(179) − ln(176) = 0.0169. 

 
Figure 2: Plot of AXIO Return 

In Figure 4.2, the horizontal axis represents the observation time of the data, while the vertical axis represents the 

percentage change in stock price at the observation time. In AXIO stock, stock returns tend to be stable and consistent 
throughout the period, but there is a high spike around the 130th period. The characteristics of each company's stock 

return data can be observed from its descriptive statistics. The following table presents the descriptive statistics for 

AXIO stocks. 
Table 1: Descriptive Statistics 

Statistics Value Statistics Value 

Minimum −0.1437 Mean 0.2877 

Median 0.0000 Standard Deviation 0.0360 

Maximum −0.0008   

From Table 1, the mean value of stock returns is negative, indicating a loss in investment. While the standard 
deviation shows the extent to which a return deviates from its mean value or the level of stock fluctuation. 
 

4.2 Stationarity Test 
The return data is then tested for stationarity against the mean using the Augmented Dickey-Fuller (ADF) test based 

on equation (2) with a significant level 𝛼 used is 5%. While the stationarity of the variance is tested using Box-Cox 
Transformation. The work was done with the help of RStudio software, the results are presented in Table 2. 

Table 2: Stationarity Test Results 

Stock Value of 𝜆 p-value 

AXIO 0.9469 ≈ 1 0.01 
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Based on Table 2, it is obtained that AXIO stock has a p-value = 0.01 < 𝛼 = 0.05 so that 𝐻0 is rejected. It can be 

said that all stock returns are stationary on mean. It is also obtained that 𝜆 is 1, so it can be said that stock returns are 
stationary with respect to variance. Based on the test results, the same results are obtained for other stocks, so the five 

stock returns are stationary both on mean and variance. 

 

4.3 Identification ARIMA Model 
The identification of the ARIMA model is done to determine the order p for the AR model, order d for the 

differencing amount, and order q for the MA model. Because the stock return data has been stationary, no differencing 

is required or in other words, order d is 0. Meanwhile, to obtain order p and q is done by looking at the ACF and PACF 
plots presented in the following Figure. 

  
Figure 3: ACF and PACF Plot of AXIO Stock Return 

Based on the plots, the ACF and PACF cut-off at lag 1, so the provisional models that can be selected are 

ARIMA(1,0,0), ARIMA(0,0,1), and ARIMA(1,0,1). 
 

4.4 Significance Test of ARIMA Model Parameters 
The temporary model that has been obtained will then be estimated using the Maximum Likelihood Estimation 

(MLE) method. The following are the results of estimating and testing the significance of model parameters on AXIO 
shares.  

Table 3: Parameter Estimation and Significance Test Results 

Model Parameter 
Parameter 
Estimation 

p-value Significant 

ARIMA(1,0,0) 
�̂� −0.0008 0.6249 Not Significant 

�̂�1 −0.1916 0.0003 Significant  

ARIMA(0,0,1) 
�̂� −0.0008 0.6085 Not Significant 

𝜃1 −0.1932 0.0002 Significant  

ARIMA(1,0,1) 

�̂� −0.0008 0.6141 Not Significant 

�̂�1 −0.0838 0.8126 Not Significant 

𝜃1 −0.1115 0.7536 Not Significant 

Based on Table 3, all parameters in the ARIMA(1,0,1) model are not significant, because the p-value is greater than 
the significance level (𝛼 =  5%) so that the model cannot be continued to the next stage. Meanwhile, in the 
ARIMA(1,0,0) and ARIMA(0,0,1) models, there is one significant parameter, which indicates that the parameter 
contributes to the model. 

 

4.5 Diagnostic Test of ARIMA Model 
To determine whether the assumptions of the ARIMA model have been met, the model is tested using the Ljung-

Box test and visualized using the Quantile-Quantile Plot (Q-Q Plot). The AXIO stock test results are presented in Table 

4. 
Table 4: Ljung-Box Test Results 

Model p-value Note 

ARIMA(1,0,0) 0.2811 White Noise  

ARIMA(0,0,1) 0.3163 White Noise 
Models that meet the white noise criteria can proceed to the visualization stage to check for normality. The Q-Q 

plot for AXIO stock is presented in Figure 4. 
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Figure 4: Q-Q Plot of Residuals 

Figure 4 shows that the quantile points on the residuals of both models move close to their reference lines. This 
indicates that the ARIMA model residuals are close to normal distribution. 

 

4.6 Selection of the Best ARIMA Model 
The ARIMA model that has met the assumptions is then selected the best for each stock using the AIC method in 

equation (13). Table 5 presents the calculation results for each model. 
Table 5: AIC Value of ARIMA Model 

Model AIC 

ARIMA(1,0,0) −1337.89 

ARIMA(0,0,1) −1337.923 
Based on Table 5, the ARIMA model is selected according to the smallest AIC value. So, the best model for AXIO 

stock is ARIMA(0,0,1). 
 

4.7 ARCH-LM Test of ARIMA Model 
Before performing GARCH modeling, it is necessary to check first whether the model has heteroscedasticity effect 

or not. The ARCH-LM test result for ARIMA(0,0,1) on AXIO stock results in a p-value of 2.232 × 10−5 which is 
smaller than the significance level (𝛼 =  5%). This indicates that the test criterion is to reject 𝐻0 or the residuals have 
a heteroscedasticity effect, so GARCH modeling is required. 

 

4.8 Identification GARCH Model 

Identification of the order of the GARCH model is done with the ACF and PACF plots of the squared residuals of 
the ARIMA model. The ACF and PACF values are calculated using equations (5) and (6) which are then presented in 

the correlogram in the following figure. 

  
Figure 5: ACF and PACF Plot of Quadratic Residuals 

Figure 5 shows the ACF and PACF of the squared residuals of AXIO stock cut-off at lag 1 to lag 3, so the provisional 

models that can be selected are GARCH(3,0), GARCH(1,3), GARCH(2,3), GARCH(3,1), GARCH(3,2), and 

GARCH(3,3). 

 

4.9 Estimation and Significance Test of ARIMA-GARCH Model Parameters 
The temporary model that has been obtained will then be estimated using the Maximum Likelihood Estimation 

(MLE) method. The estimation results and significance tests of two sample ARIMA-GARCH models for AXIO stock 
are presented in Table 6 as an illustration of the overall analysis. 
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Table 6: Parameter Estimation and Significance Test Results 

Model Parameter 
Parameter 

Estimation 
p-value Significance 

ARIMA(0,0,1)-

GARCH(3,0) 

�̂� 0.0005 0.7307 Not Significant 

𝜃1 0.1180 0.1305 Not Significant 

�̂�0 0.0004 0.0000 Significant 

�̂�1 0.2132 0.0273 Significant 

�̂�2 0.3988 0.0008 Significant 

�̂�3 0.1359 0.0340 Significant 

ARIMA(0,0,1)-

GARCH(1,3) 

�̂� −0.0002 0.8756 Not Significant 

𝜃1 0.1438 0.0311 Significant 

�̂�0 0.00006 0.0091 Significant 

�̂�1 0.2742 0.0009 Significant 

�̂�1 0.7012 0.1142 Not Significant 

�̂�2 0.0000 1.0000 Not Significant 

�̂�3 0.0000 1.0000 Not Significant 

Table 6 shows that all models have more than one significant parameter. This is indicated by a p-value that is 

smaller than the significance level. As an illustration, the ARIMA(0,0,1)-GARCH(3,0) mean return model shows that 

only the 𝑡 − 1 residual contributes. Then, the residual variance model at time 𝑡 shows that only the squared residual in 

period 𝑡 − 1 and the residual variance of period 𝑡 − 2 contribute to the model. 

 

4.10 Test and ARCH-LM test ARIMA-GARCH Model 

 The provisional model that has met the significance test is then tested diagnostically using the Ljung-Box test 
based on equation (9). The test results for AXIO stock are presented in Table 7. 

Table 7: Diagnostic Test Results of ARIMA-GARCH Model 

 ADF Test ARCH-LM Test 

Model p-value Note p-value Note 

ARIMA(0,0,1)-GARCH(3,0) 0.6364 White Noise 0.1082 There is no heteroscedasticity effect 

ARIMA(0,0,1)-GARCH(1,3) 0.4752 White Noise 0.8661 There is no heteroscedasticity effect 

ARIMA(0,0,1)-GARCH(2,3) 0.8018 White Noise 0.3586 There is no heteroscedasticity effect 

ARIMA(0,0,1)-GARCH(3,1) 0.8129 White Noise 0.8715 There is no heteroscedasticity effect 

ARIMA(0,0,1)-GARCH(3,2) 0.8486 White Noise 0.3851 There is no heteroscedasticity effect 

ARIMA(0,0,1)-GARCH(3,3) 0.8489 White Noise 0.5496 There is no heteroscedasticity effect 
 Based on Table 7, it is obtained that all models meet the white noise criteria, with a p-value greater than the 

significance level (𝛼 =  5%). This means that the test criterion is to accept 𝐻0 or there is no autocorrelation in the data. 
Table 7 also shows that all models have no heteroscedasticity effect, because the p-value is greater than the significance 

level (𝛼 =  5%) so the test criterion is to accept 𝐻0. 

 

4.11 Selection of the Best ARIMA-GARCH Model 
 Selection of the best ARIMA-GARCH model is done by calculating the AIC value based on equation (13). The 

results of the AIC value calculation are shown in Table 8. 

Table 8: AIC Value of ARIMA-GARCH Model 

Model AIC value 

ARIMA(0,0,1)-GARCH(3,0) −4.2331 

ARIMA(0,0,1)-GARCH(1,3) −4.2577 
ARIMA(0,0,1)-GARCH(2,3) −4.2575 
ARIMA(0,0,1)-GARCH(3,1) −4.2607 
ARIMA(0,0,1)-GARCH(3,2) −4.2576 
ARIMA(0,0,1)-GARCH(3,3) −4.2519 

The best model is selected based on the smallest AIC value, obtained the ARIMA (0,0,1)-GARCH (3,1) model for 

AXIO shares. Based on the calculation results, the ARIMA(2,0,0)-GARCH(1,1) model is obtained for DIVA shares, 
ARIMA(0,0,1)-GARCH(1,3) for EDGE shares, ARIMA(2,0,2)-GARCH(1,3) for MCAS shares, and ARIMA(1,0,0)-

GARCH(1,0). 

 

4.12 Stock Return Forecasting 

 The model that has been obtained in the previous stage is then forecast one period ahead for each stock. Forecasting 

includes two aspects, namely the mean return and volatility. The forecasting results are presented in Table 9. 
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Table 9: Mean Forecasting Results and Volatility of Stock Returns 

Stocks Model 
Mean predicted  

return 

Predicted volatility of 

return 

AXIO ARIMA(0,0,1)-GARCH(3,1) 0.002093 0.023221 

DIVA ARIMA(2,0,0)-GARCH(1,1) 0.0007793 0.09585 
EDGE ARIMA(0,0,1)-GARCH(1,3) 0.01175 0.0199 
MCAS ARIMA(2,0,2)-GARCH(1,3) −0.004396 0.01584 
CASH ARIMA(1,0,0)-GARCH(1,0) −0.00008558 0.0354 

 A positive mean return prediction indicates a potential increase in stock prices, while a negative one indicates a 

potential decrease in stock prices so investors should be careful.  
 

4.13 Surplus Value Calculation 

 The calculation of surplus value involving asset return and liability return is carried out. The return on liabilities 

used is simulated data with the assumption of normal distribution which is generated as much as 349 data using EasyFit, 
then the mean value and variance are estimated, the results of which are presented in the following table. 

Table 10: Mean and Volatility of Stock Liability 

Stocks Mean (�̂�𝐿) Variance (�̂�𝐿
2) 

AXIO −0.00005 0.00011 

DIVA 0.00271 0.00012 
EDGE 0.00020 0.00003 
MCAS 0.00057 0.00001 
CASH 0.00019 0.00007 

 Furthermore, the covariance value between asset return and liability return of each stock is calculated using 

Microsoft Excel. Then a gamma vector is formed which is the covariance between asset returns and liability returns as 

follows. 

𝛄𝑇 = [−0.000008 −0.000059 0.000002 −0.000004 0.0000004] 

To estimate the mean and variance of surplus return, it is assumed that the ratio between initial assets and liabilities is 

𝑓0 = 1. 
Table 11: Mean and Volatility of Stock Surplus 

Stocks Mean (�̂�𝑆) Variance (�̂�𝑆
2) 

AXIO 0.00214 0.02335 

DIVA −0.00194 0.09609 
EDGE 0.01155 0.01993 
MCAS −0.00496 0.01585 
CASH −0.00027 0.03547 

 

4.14 Formation of Mean Vector, Unit Vector, and Variance Covariance Matrix 

 Based on the mean value of surplus returns in Table 11, the following mean vector is formed: 

𝛍𝑆
𝑇 = [0.00214 −0.00194 0.01155 −0.00496 −0.00027] 

 Then, a unit vector is formed which has five elements, according to the number of stocks analyzed. 

𝐞𝑇 = [1 1 1 1 1] 

 Furthermore, the variance-covariance matrix between stock surplus returns is formed. The variance value of an 
asset uses the information in Table 11, while the covariance value between surplus returns obtained is very small, so it 

is assumed to be equal to zero. The inverse matrix is obtained as follows: 

𝚺−1 =

[
 
 
 
 
42.8215 0 0 0 0

0 10.4069 0 0 0
0 0 50.1829 0 0
0 0 0 63.0724 0
0 0 0 0 28.1898]

 
 
 
 

 

 

4.15 Mean-Variance Model Portfolio Optimization 

In this section, the optimal portfolio of surplus returns is formed. Based on the values of the mean return surplus 

vector, the unit vector, and the inverse of the variance-covariance matrix, the optimization process is performed with 
reference to equation (21). In this process, risk tolerance values are simulated and tested starting with 0; 0.01; 0.02 and 
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so on which are multiples of 0.01. The calculation is done using Microsoft Excel and the results are presented in Table 

12. 
Table 12: Portfolio Optimization Results 

𝜏 
𝐰T 

�̂�𝑆𝑝
   �̂�𝑆𝑝

2   Rasio 
AXIO DIVA EDGE MCAS CASH 

0 0.2199 0.0529 0.2582 0.3241 0.1450 0.0017 0.0051 0.33134 

0.01 0.2200 0.0525 0.2631 0.3199 0.1444 0.0018 0.0051 0.34671 

0.02 0.2202 0.0521 0.2681 0.3157 0.1439 0.0019 0.0051 0.36197 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

0.6 0.2312 0.0302 0.5549 0.0720 0.1117 0.0065 0.0080 0.80764 

0.61 0.2314 0.0298 0.5598 0.0678 0.1111 0.0065 0.0081 0.80785 

0.62 0.2316 0.0295 0.5648 0.0636 0.1105 0.0066 0.0082 0.80790 

0.63 0.2318 0.0291 0.5697 0.0594 0.1100 0.0067 0.0083 0.80780 

0.64 0.2320 0.0287 0.5747 0.0552 0.1094 0.0068 0.0084 0.80755 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

0.76 0.2343 0.0242 0.6340 0.0048 0.1028 0.0077 0.0097 0.79467 

0.77 0.2345 0.0238 0.6390 0.0006 0.1022 0.0078 0.0098 0.79293 

0.78 0.2346 0.0234 0.6439 −0.0036 0.1017 0.0079 0.0100 0.79110 

From Table 12, for a risk tolerance of 0, the weights of the minimum portfolio for each stock are: AXIO by 0,2199; 

DIVA by 0,0529; EDGE by 0,2582; MCAS by 0,3241; and CASH by 0,1450. With a mean portfolio surplus return of 

0,0017 and a variance of 0,0051, the smallest ratio of 0,33134 is obtained. Furthermore, for a risk tolerance of 0,62, the 

optimal portfolio is obtained because the ratio value of 0,80790 is the largest. This value has a weight for each of its 
shares, namely: AXIO by 0,2316; DIVA by 0,0295; EDGE by 0,5648; MCAS by 0,0636; and CASH by 0,1105. Then, 

for a risk tolerance of ≥  0,78, the portfolio obtained is said to be not feasible because there is a negative portfolio 

weight. 
The efficient frontier graph of the mean value of the surplus portfolio return and its variance with a risk tolerance 

limit of 0 ≤  𝜏 <  0,78 plotted using RStudio is presented in Figure 6. 

 
Figure 6: Efficient Surface Graph 

In Figure 6, the horizontal axis shows the level of risk as measured by the variance, while the vertical axis shows 

the expected return. The shape of the curve illustrates that portfolios with higher variance provide higher mean returns. 

However, increased risk does not provide significant gains after a certain point, as can be seen in Figure 7. 
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Figure 7: Ratio vs Risk Graph 

Figure 7 shows that as the variance increases, the ratio increases significantly. But after reaching the highest 
point indicated by the optimal point, the ratio starts to decline even as the variance increases. At this point, the portfolio 

yields the highest ratio, which indicates the most efficient combination of risk and return. 

5. Conclussion 

The application of the ARIMA-GARCH model to the technology sector stock return data produces the best model 
based on the smallest AIC value, namely ARIMA(0,0,1)-GARCH(3,1) for AXIO stock, ARIMA(2,0,0)-GARCH(1,1) 
for DIVA, ARIMA(0,0,1)-GARCH(1,3) for EDGE, ARIMA(2,0,2)-GARCH(1,3) for MCAS, and ARIMA(1,0,0)-
GARCH(1,0) for CASH. In the formation of the optimal portfolio, the weight allocation of each stock is obtained: 
AXIO by 23.16%; DIVA by 2.95%; EDGE by 56.48%; MCAS by 6.36%; and CASH by 11.05%. The composition of 
the weight allocation can produce a portfolio return of 0.0066 and a variance (risk) return of 0.0082. 
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