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Abstract 

The growth of capital market investors in Indonesia is increasing every year. The most popular investment instrument is stocks. 

One of the stocks on the Indonesia Stock Exchange (IDX) is the Telkom Indonesia (TLKM). Through stock investment, investors 

can make a profit by utilizing stock prices in the market. However, stock price fluctuations are uncertain. Therefore, modeling is 

needed to be able to predict stock prices more accurately. The purpose of this study was to find an appropriate time series model 

and Neural Network model architecture, and to measure the accuracy of the two models in predicting future stock prices of TLKM. 

The study was conducted using the Autoregressive Integrated Moving Average (ARIMA) model and Backpropagation Neural 

Network (BPNN). For comparison, the Mean Absolute Percentage Error (MAPE) method was used. The data used in both models 

were the stock prices of Telkom Indonesia (TLKM) from September 1, 2023 to September 30, 2024. The result shows that the best 

ARIMA model, selected based on the least Akaike Information Criterion (AIC) value, is ARIMA(0,1,3) with a MAPE value of 
1.20%. Meanwhile, the best BPNN model selected from the smallest testing Mean Squared Error (MSE) value, is BPNN(1,3,1) 

with a MAPE value of 1.17%. Among those two models, the BPNN model is more accurate because it has less MAPE value 

compared to the ARIMA one. The results of this research can be considered in forecasting TLKM stock price in the future. 
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1. Introduction 

Forecasting is a process to predict future events by analyzing data sequences that are chronologically indexed (Taslim 

and Murwantara, 2024; Wei et al., 2019). This process plays an important role in the finance industry, particularly in 

investment. The data used in this process is called time series data. In Indonesia, the number of capital market investors 
is growing reaching 13 million single investor identification (SID) in June 2024. Of the 13 million SID, 5.7 million of 

them are stock investors.  
Through stock investment, investors can gain profit by leveraging stock price changes in the market. However, stock 

price fluctuations are uncertain. Therefore, modelling is required in order to make more accurate stock price predictions. 
One of the time series models often used in forecasting is the Autoregressive Integrated Moving Average (ARIMA) 
model. In addition, there are various developments of Artificial Intelligence (AI) models that can be used as well, such 
as Backpropagation Neural Network (BPNN). 

The comparison of forecasting using ARIMA and BPNN has been conducted before with various objects. For 
example, research done by Sukono et al., (2019) using Gross Regional Domestic Product (GRDP) of Bandung Regency, 
shows that the Mean Absolute Percentage Error (MAPE) value for BPNN model is less than the ARIMA model and 
therefore more accurate. Another research by Kittichotsatsawat et al. (2023) shows that the BPNN model appeared to 
perform better than ARIMA in forecasting Arabica coffee yields. However, the application of these models are rarely 
used in the Indonesian stock market. This study contributes by comparing the ARIMA and BPNN models to a stock 
listed on the Indonesia Stock Exchange (IDX), namely Telkom Indonesia (TLKM). 

The purpose of this study is to determine the appropriate time series model and Neural Network model architecture, 
and to compare the accuracy of the two models in predicting TLKM stock price in the future. 

https://ijqrm.rescollacomm.com/
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2. Literature Review 

2.1. Autoregressive Integrated Moving Average (ARIMA) 

ARMA model combines the Autoregressive (AR) and Moving Average (MA) model. Autoregressive model is a time 
series model which assumes that the current time series data is influenced by the time series data value in the past. On 
the other hand, Moving Average model is a time series model with the assumption that the current time series data 
depends on the residual value of the data in the previous period. According to Wei (2006), the equation of the ARMA 
model, where 𝑝 represents the order of the AR model and 𝑞 represents the order of the MA model, and can be denoted 
as ARMA(𝑝, 𝑞), is as follows 

 𝑧𝑡 = 𝜇 + 𝜙1𝑧𝑡−1 + ⋯ + 𝜙𝑝𝑧𝑡−𝑝 − 𝜃1𝜀𝑡−1 − ⋯ − 𝜃𝑞𝜀𝑡−𝑞 + 𝜀𝑡 (1) 

with 𝑧𝑡  random variable stock price at time 𝑡; 𝜙1, … , 𝜙𝑝 AR model parameters; 𝜃1, … , 𝜃𝑞 MA model parameters, and 

𝜀𝑡  value of the residual at time 𝑡. 
ARIMA model combines the AR model, differencing process, and MA model. Differencing process is done when 

the time series data is not stationary. According to Wei (2006), the equation of the ARIMA model, where 𝑝 represents 
the order of the AR model, 𝑞 represents the order of the MA model, and d represents the order of differentiation, and 
can be denoted as ARIMA(𝑝, 𝑑, 𝑞), is as follows: 

 𝜙𝑝(𝐵)(1 − 𝐵)𝑑𝑧𝑡 = 𝜇 + 𝜃𝑞(𝐵)𝜀𝑡 (2) 

where 𝜙𝑝(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵2 − ⋯ − 𝜙𝑝𝐵𝑝AR operator; 𝜃𝑞(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵2 − ⋯ − 𝜃𝑞𝐵𝑞  MA operator; 

𝐵 backshift operator, and (1 − 𝐵) differencing operator. 

2.2. Artificial Neural Network (ANN) 

ANN is a computational model that aims to imitate how the human brain functions (Islam et al., 2019). This model 
consists of several layers, each layer processes information and passes it to the next layer. A relationship known as 

weight is present in the process (Mustafidah and Suwarsito, 2020). 

Activation function is a mathematic function applied to input signal to produce the output of a neuron (Works, 2021). 

One of the most commonly used functions is the binary sigmoid function because its value is in between [0,1] and it is 

easily derived. According to Sukono et al. (2019), the equation of binary sigmoid function is as follows: 

 
𝑦 = 𝑓(𝑥) =

1

1 + 𝑒−𝑥
 (3) 

 

The first derivative of this function is as follows: 

 𝑓′(𝑥) = 𝑓(𝑥)[1 − 𝑓(𝑥)] (4) 

 
2.2.1. Backpropagation Neural Network (BPNN) 

 
BPNN is a supervised learning approach method used to train ANN (Singh et al., 2022). Backpropagation consists 

of several layers, including input layer, hidden layer, and output layer. This method can be denoted as BPNN(𝑎, 𝑏, 𝑐) 

with 𝑎 the number of input layer units, 𝑏 the number of hidden layer units, and 𝑐 the number of output layer units. 
Backpropagation network training consists of three phases, namely the feedforward phase for input training patterns, 

the error value calculation and backpropagation phase, and the weight adjustment phase (Fausett, 1994). In the first 
phase, the input signal 𝑥𝑖 is calculated forward using the activation function to produce the network output 𝑦𝑘. The 
output is then compared with the expected target value. In the second phase, the difference between the network output 
value and the expected target value (error) is calculated using the Mean Squared Error (MSE) method and propagated 
backward starting from the path directly related to the units in the output layer. In the last phase, the weights in all layers 
are adjusted simultaneously. 

 
2.2.2. Levenberg-Marquardt Method 

 
Levenberg-Marquardt method is an algorithm used to train Backpropagation Neural Network. This method is able 

to converge faster than other optimization methods. According to Sukono et al., (2019) and Fausett (1994), the 

Levenberg-Marquardt Backpropagation algorithm is as follows: 

 

Step 1:  

 

Initialize weights and biases with small random values along with maximum epoch and MSE target. 

Step 2: Determine the required paramaters, such as: (i) Initialization 𝑒𝑝𝑜𝑐ℎ = 0 , (ii) Levenberg-Marquardt 

parameter (𝜇), 𝜇 > 0, and (iii) Factor beta parameter (𝛽), which is used to be multiplied or divided by 

𝜇. 
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Step 3: Follow the steps below for each pair of training data, if epoch< maximum epoch or MSE > MSE target, 

do the following steps. 

 

Phase I: Feedforward 

Step 4: The input signal 𝑥𝑖 is received by each input unit 𝑥𝑖, 𝑖 = 1,2, … , 𝑛, and then passed to every unit in the 

hidden layer. 

Step 5: Each unit of the hidden layer 𝑧𝑗 , 𝑗 = 1,2, … , 𝑝 adds up the bias 𝑣0𝑗
 and the weighted input signals 𝑣𝑖𝑗, 

 
𝑧__𝑖𝑛𝑗 = 𝑣0𝑗

+ ∑ 𝑥𝑖𝑣𝑖𝑗

𝑛

𝑖=1

. (5) 

Apply the activation function in order to get the output signal, 

 
𝑧𝑗 = 𝑓(𝑧__𝑖𝑛𝑗) =

1

1 + 𝑒−𝑧__𝑖𝑛𝑗
. (6) 

Then, the signal 𝑧𝑗  is sent to every unit in the layer above (output layer). 

Step 6: Each unit of the output layer 𝑦𝑘 , 𝑘 = 1,2, … , 𝑛 adds up the bias 𝑤0𝑘
 and the weighted input signals 𝑤𝑗𝑘

, 

 

𝑦__𝑖𝑛𝑘 = 𝑤0𝑘
+ ∑ 𝑧𝑗𝑤𝑗𝑘

𝑝

𝑗=1

. (7) 

Apply the activation function in order to get the output signal, 
 

𝑦𝑘 = 𝑓(𝑦__𝑖𝑛𝑘) =
1

1 + 𝑒−𝑦__𝑖𝑛𝑘
. (8) 

 

 

Phase II: Backpropagation 

Step 7: Calculate the error, 

 𝑒𝑟𝑟𝑜𝑟𝑘 = 𝑒𝑘 = 𝑡𝑘 − 𝑦𝑘 , (9) 

where 𝑡𝑘 is utput target at 𝑘. Calculate the Mean Squared Error (MSE) using the formula below: 

 
𝑀𝑆𝐸 =

∑ 𝑒𝑟𝑟𝑜𝑟𝑘
2𝑛

𝑖=1

𝑛
. (10) 

Then, the error vector can be formed as follows: 

 𝒆 = (𝑒1  𝑒2  … 𝑒𝑛)𝑇. (11) 

 

Step 8: Calculate the output delta at each unit at the output layer 𝑦𝑘 , 𝑘 = 1,2, … , 𝑚 as follows: 

 𝛿2𝑘
= 𝑒𝑟𝑟𝑜𝑟𝑘𝑓′(𝑦__𝑖𝑛𝑘). (12) 

Calculate its weight correction term (used to update 𝑤𝑗𝑘
 later), 

 𝜙2𝑗𝑘
= 𝛿2𝑘

 𝑧𝑗; 𝑘 = 1,2, . . 𝑚; 𝑗 = 0,1, … 𝑝. (13) 

Calculate its bias correction term (used to update 𝑤0𝑘
 later), 

 𝛽2𝑘
= 𝛿2𝑘

; 𝑘 = 1,2, . . 𝑚. (14) 

 

Step 9: Each units from hidden layer (𝑧𝑗, 𝑗 = 1,2, … , 𝑝) adds its delta inputs, 

 
𝛿__𝑖𝑛𝑗 = ∑ 𝛿2𝑘

𝑤𝑗𝑘,

𝑚

𝑘=1

 (15) 

multiplies by the derivative of the activation function to calculate the hidden delta, 

 𝛿1𝑗
= 𝛿__𝑖𝑛𝑗𝑓′(𝑧__𝑖𝑛𝑗). (16) 

Calculate its weight correction term (used to update 𝑣𝑖𝑗 later), 

 𝜙1𝑖𝑗
= 𝛿1𝑗

𝑥𝑖 . (17) 

Calculate its bias correction term (used to update 𝑣0𝑗 later), 

 𝛽1𝑗
= 𝛿1𝑗

. (18) 

 

 

Step 10: 

Forming the Jacobian matrix 𝑱, 

 𝑱 = [𝜙111
… 𝜙1𝑛𝑝

𝛽11
… 𝛽1𝑝

 𝜙211
… 𝜙2𝑝𝑚

𝛽21
… 𝛽2𝑚]

𝑇
. (19) 

 

 

Phase III: Update weights and biases 
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Step 11: Calculate the new weights and biases as follows: 

 𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 − [𝑱𝑇𝑱 + 𝜇𝑰]−1𝑱𝑇𝒆, (20) 

with, 

 𝒘 = [𝑤11 … 𝑤𝑝𝑚 𝑤01
… 𝑤0𝑚

 𝑣11 … 𝑣𝑛𝑝 𝑣01
… 𝑣0𝑝]𝑇. (21) 

 

Step 12: Modify 𝜇 

If 𝑀𝑆𝐸𝑛𝑒𝑤 ≤ 𝑀𝑆𝐸𝑜𝑙𝑑, then: (i) 𝜇′ =
𝜇

𝛽
, (ii) 𝑒𝑝𝑜𝑐ℎ = 𝑒𝑝𝑜𝑐ℎ + 1, and (iii) Go back to step 4. 

If 𝑀𝑆𝐸𝑛𝑒𝑤 > 𝑀𝑆𝐸𝑜𝑙𝑑, then: (i) 𝜇′ = 𝜇𝛽 and (ii) Go back to step 11. 

Step 13: The training process is stopped when epoch = epoch maksimum or MSE ≤ MSE target. 

 
2.2.3. Normalization and Denormalization 

 
Normalization is done to ensure that the data used is within a specific range of values. Min-max normalization 

changes the range of data values to be between 0 and 1 based on the smallest and biggest values in the data. The formula 

for data normalization is as follows: 
 

𝑋𝑛 =
(𝑍 − 𝑍min)

𝑍𝑚𝑎𝑥 − 𝑍𝑚𝑖𝑛
. (22) 

On the other hand, the process of returning data to its original value before the normalization process is called 

denormalization. Denormalization can be done with following equation: 

 𝑍 = (𝑋𝑛)(𝑍𝑚𝑎𝑥 − 𝑍𝑚𝑖𝑛) + 𝑋𝑚𝑖𝑛 (23) 

with 𝑋𝑛  normalized data values; 𝑍 actual data values; 𝑍𝑚𝑎𝑥  maximum value of the actual data; and 𝑍𝑚𝑖𝑛  minimum 
value of the actual data. 

3. Materials and Methods 

3.1. Materials 

This study used the daily closing price of a stock listed on the Indonesia Stock Exchange, namely Telkom Indonesia 
(TLKM) from September 1, 2023 to September 30, 2024 with a total of 258 observations. The data was taken from 
www.yahoo.finance.com website. 

Figure 1: TLKM stock price plot 

3.2. Methods 

This research was conducted to find the most accurate model to predict TLKM stock price. The models used are the 
ARIMA and BPNN models. For ARIMA model, the steps are as follows: (i) Identify the order value of 𝑝 and 𝑞 by 
Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF), (ii) Parameter estimation using 
Maximum Likelihood Estimation (MLE), (iii) Residual diagnostic test for white noise and normally distributed 
assumptions, and (iv) Forecasting. For BPNN model, the steps are as follows: (i) Parameters, weights, and biases 
initialization, (ii) Feedforward, (iii) Backpropagation, (iv) Updating weights and biases, and (v) Forecasting using the 
best BPNN model, decided based on the smallest MSE testing value. Then, compare both model with Mean Absolute 
Percentage Error (MAPE) to get the more accurate model between ARIMA and BPNN to predict TLKM stock price. 

http://www.yahoo.finance.com/
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4. Results and Discussion 

4.1. Data Analysis Using ARIMA 

In this section, the process of determining the best ARIMA model for TLKM stock price is explained. 

 
4.1.1. Stationary Test 

 
This test was done using the Augmented Dickey-Fuller (ADF) test with the help of Eviews 12 software. The 

hypothesis used was 𝐻0: data is not stationary and 𝐻1; data is stationary. From the test results, a p-value of 0.8210 was 

obtained at a significance level (𝛼) of 5%. Therefore p-value > 𝛼 was applied, so 𝐻0 was accepted meaning the data is 

not stationary. Therefore, differencing process was done starting from the first order. Then, the differenced data was 

tested again. From the test results, the p-value was 0.0000. Since p-value < 𝛼, 𝐻1 was accepted meaning the data is 

already stationary and could proceed to the next step. 
 

4.1.2. Model Identification 

 

The model identification for 𝑝 and 𝑞 order can be done using ACF and PACF plots, with the help of Eviews 12 

software. While, the 𝑑 order was determined by the differencing order which is one. Thus, the model used is a model 

of ARIMA(𝑝, 1, 𝑞). Both the ACF and PACF plot decreased exponentially from lag 3. Therefore, the temporary models 

to be tested further are ARIMA(3,1,0), ARIMA(0,1,3), and ARIMA(3,1,3).  

 
4.1.3. Selection of the Best Model 

 
Choosing the best model can be done using the Akaike Information Criterion (AIC), where the smallest AIC value 

shows the best model. Based on the results done using Eviews 12 software, the AIC value from each model is as follows: 

ARIMA(3,1,0) model with AIC value of 10.8220, ARIMA(0,1,3) model with AIC value of 10.8214, and ARIMA(3,1,3) 

model with AIC value of 10.8383. The best model is ARIMA(0,1,3) because it has the least AIC value. 

 
4.1.4. Parameter Estimation and Significance Test (Test statistics t) 

 
Parameter estimation was done using Eviews 12 software. The estimation results for 𝜇 is -2.9321, 𝜙1 is -0.0038, 𝜙2 

is 0.0569, and 𝜙3 is 0.1534. However, 𝜙3 parameter was the only parameter that was significant at a significance level 

of 5%. Therefore, it is necessary to re-estimate the model using only 𝜙3 parameter. The re-estimation result for 𝜙3 is 
0.1525. So, the equation of ARIMA(0,1,3) for TLKM stock price is as follows: 

 𝑧𝑡 = −0.1525εt−3 (24) 
Against the model equation (24), it is required to test the significance with statistical test t. The test hypothesis used 

is 𝐻0: 𝜃3 = 0 (parameter is not significant) and 𝐻1: 𝜃3  ≠ 0 (parameter is significant). From the test results, a p-value 

of 0,0136 was obtained at a significance level (𝛼) of 5%. Therefore p-value < 𝛼 was applied, so 𝐻1  was accepted 

meaning the parameter is significant. 
 

4.1.5. Diagnostic Test 

 
Diagnostic test is needed because ARIMA model residual is assumed to be white noise and normally distributed. 

White noise test is done using the Ljung-Box test to determine if there is an autocorrelation in the residual. The 

hypothesis used is 𝐻0: residual is white noise and 𝐻1: residual is not white noise. From the test results, a p-value of 

0.6930 was obtained at a significance level (𝛼) of 5%. Therefore p-value > 𝛼 was applied, so 𝐻0 was accepted meaning 
the residual is white noise. Normally distributed test can be done using the Jarque-Bera test. However, because the data 

used has large enough sample sizes (more than 30), the normally distributed test can be skipped (Pallant, 2011). 

 
4.1.6. Forecasting with ARIMA Model 

 
After going through many tests, the best estimator of the ARIMA(0,1,3) model can be used for forecasting TLKM 

stock price. The comparison plot between actual data and forecasting results of TLKM stock price from September 1, 
2023 to September 30, 2024 can be shown as in the graph in Figure 2. 
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Figure 2:  Plot of actual data and forecast results of the ARIMA model for TLKM 

In Figure 2, the blue line shows the actual value of the data and the orange line shows the forecast value. It can be 
seen that the two lines are close together on the comparison chart. This indicates that the ARIMA model used can 

capture the data movement pattern well. Then, the MAPE calculation was carried out using Eviews 12 software, 

obtaining a MAPE of 1.20% for TLKM. 

4.2. Data Analysis Using BPNN 

In this section, the process of determining the best BPNN model for TLKM stock price is explained. 

 
4.2.1. Data Normalization 

Before starting the analysis process with BPNN, the data is first normalized using equation (22). This is done since 
the activation function used is a binary sigmoid function, which has a range value between 0 and 1. After the data is 

normalized, it was then used for the design of network structure, as follows.  

 
4.2.2. Network Architecture Formation 

After the stock price data is normalized, the next stage is the formation of the network architecture, such as the division 
of input and output variables, the division of training and testing data, determining the number of hidden and output 

units, and the maximum epoch and MSE target as follows: 

a) Divide the normalized data into input and output variables. Determining the lag combination of input variables is 
done to determine the amount of past data used to predict future values. The lag combination used is obtained 

through a trial and error process. In this process, testing is carried out starting from small to larger lags. There are 

six input combinations tested in this research as follows: 

a. Input at the 1st lag (𝑋𝑡−1), 

b. Input at the 1st lag (𝑋𝑡−1) and 2nd lag (𝑋𝑡−2), 

c. Input at the 1st lag (𝑋𝑡−1), 2nd lag (𝑋𝑡−2), and 3rd lag (𝑋𝑡−3), 

d. Input at the 1st lag (𝑋𝑡−1), 2nd lag (𝑋𝑡−2), 3rd lag (𝑋𝑡−3), and 4th lag (𝑋𝑡−4), 

e. Input at the 1st lag (𝑋𝑡−1), 2nd lag (𝑋𝑡−2), 3rd lag (𝑋𝑡−3), 4th lag (𝑋𝑡−4), and 5th lag (𝑋𝑡−5), 

f. Input at the 1st lag (𝑋𝑡−1), 2nd lag (𝑋𝑡−2), 3rd lag (𝑋𝑡−3), 4th lag (𝑋𝑡−4), 5th lag (𝑋𝑡−5), and 6th lag (𝑋𝑡−6). 

b) Dividing the data into training and testing data with a ratio of 80:20. Training data is used so that the model can 

learn data patterns to be evaluated later using testing data. 
c) Determining the number of hidden layers and hidden layer units. Hidden layers are used to introduce non-linearity 

using activation functions. The use of many hidden layers can slow down the training process, so in this study 

one hidden layer was used. The number of hidden units used was obtained through trial and error. In this process, 
testing was carried out starting from small hidden units to larger ones. The number of units tested was one to six 

units. 

d) In this study, one output layer unit was used which was the result of forecasting TLKM stock price. 

e) Epoch is a parameter for the maximum number of iterations in the training process. One epoch means that all 
training data is processed once completely. The maximum epoch is determined to set the model training time 

limit.  

f) In this study, a maximum epoch of 1000 was used.  
g) In this study, the MSE target used was 0.0001 to ensure a high level of accuracy in predicting stock prices. There 

are two types of MSE obtained, namely MSE training and MSE testing. The best Backpropagation Neural 

Network (BPNN) model network architecture is selected based on the smallest MSE testing. 
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4.2.3. Training and Testing Process 

The training process was carried out using 80% of the data to obtain the weights and biases trained using the 

Levenberg-Marquardt algorithm with a binary sigmoid activation function. Then, the testing process was carried out 

using the remaining 20% of the data to test the weights and biases that have been obtained. The training and testing 

process is carried out for each input combination with the number of hidden layer units one to six to obtain the best 
BPNN model network architecture in predicting TLKM stock price. The MSE resulting from the training and testing 

process on TLKM stock price data calculated using Python software can be seen in Table 1. 

 
Table 1: MSE training and testing of TLKM stock price 

No BPNN Model  Training MSE Testing MSE No BPNN Model  Training MSE Testing MSE 

1 BPNN(1,1,1) 0.00152355 0.00143671 19 BPNN(4,1,1) 0.00147831 0.00143038 

2 BPNN(1,2,1) 0.00133549 0.00104754 20 BPNN(4,2,1) 0.00147785 0.00143112 

3 BPNN(1,3,1) 0.00129972 0.00098483 21 BPNN(4,3,1) 0.00128438 0.00111195 

4 BPNN(1,4,1) 0.00133552 0.00104782 22 BPNN(4,4,1) 0.00105133 0.00118488 

5 BPNN(1,5,1) 0.00132411 0.00099251 23 BPNN(4,5,1) 0.00123039 0.00110114 

6 BPNN(1,6,1) 0.00131125 0.00098828 24 BPNN(4,6,1) 0.00129634 0.0014227 

7 BPNN(2,1,1) 0.00152909 0.00142959 25 BPNN(5,1,1) 0.00146469 0.00152509 

8 BPNN(2,2,1) 0.00134155 0.00104795 26 BPNN(5,2,1) 0.00126038 0.00129685 

9 BPNN(2,3,1) 0.00129524 0.00099945 27 BPNN(5,3,1) 0.00149809 0.00136711 

10 BPNN(2,4,1) 0.00129764 0.00100697 28 BPNN(5,4,1) 0.00113571 0.00125947 

11 BPNN(2,5,1) 0.0013087 0.00098575 29 BPNN(5,5,1) 0.24980255 0.6584132 

12 BPNN(2,6,1) 0.00127818 0.00101995 30 BPNN(5,6,1) 0.00176332 0.00148551 

13 BPNN(3,1,1) 0.00152943 0.00145445 31 BPNN(6,1,1) 0.00145268 0.00151786 

14 BPNN(3,2,1) 0.00152661 0.00144883 32 BPNN(6,2,1) 0.00125287 0.00133264 

15 BPNN(3,3,1) 0.00131837 0.00107187 33 BPNN(6,3,1) 0.00119763 0.00151087 

16 BPNN(3,4,1) 0.24819011 0.6584132 34 BPNN(6,4,1) 0.00117449 0.00128245 

17 BPNN(3,5,1) 0.00160018 0.00303003 35 BPNN(6,5,1) 0.00113781 0.00127506 

18 BPNN(3,6,1) 0.00124258 0.00101355 36 BPNN(6,6,1) 0.00126522 0.00133276 

Table 1 shows that the best Backpropagation Neural Network model architecture for TLKM stock price is 
BPNN(1,3,1) because it has the smallest MSE testing around 0.00098483. This model consists of 1 input unit, 3 hidden 

units, and 1 output unit. 

 
4.2.4. Forecasting with BPNN Model 

 

After determining the best BPNN model architecture, the next step is to forecast the stock price of TLKM from 

September 1, 2023 to September 30, 2024. Then, the forecast results are denormalized using equation (23). The 

comparison plot between the actual data and the forecast results can be seen in Figure 3. 
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Figure 3:  Plot of actual data and forecast results of the BPNN model for TLKM 

 

In Figure 3, the blue line shows the actual value of the data and the orange line shows the forecast value. It can be 
seen that the two lines are close together on the comparison chart. This indicates that the BPNN model used can 

capture the data movement pattern well. Then, the MAPE calculation is carried out using Python software, obtaining a 

MAPE of 1.17% for TLKM. 

4.3. MAPE Comparison of ARIMA and BPNN Models 

To find out a better model in predicting TLKM stock price, it is necessary to conduct a comparative analysis of the 
level of prediction accuracy of each model. The level of prediction accuracy of the model can be calculated using the 

Mean Absolute Percentage Error (MAPE). The comparison of MAPE for the ARIMA and BPNN models for TLKM 

can be seen in Table 2. 
Tabel 2. MAPE Comparison of ARIMA and BPNN Models 

Issuer Code ARIMA Model MAPE BPNN Model MAPE 

TLKM ARIMA(0,1,3) 1,20% BPNN(1,3,1) 1,17% 

Based on Table 2, the best ARIMA model for predicting the stock price of TLKM is ARIMA(0,1,3) with a MAPE 
value of 1.20%, indicating that the model is very accurate and only the moving average (MA) component is significant. 

On the other hand, the best BPNN model for TLKM is BPNN(1,3,1) with a MAPE value of 1.17%, indicating that this 

model is better than ARIMA for TLKM. 

 

5. Conclussion 

This study has successfully use the Autoregressive Integrated Moving Average (ARIMA) and Backpropagation 
Neural Network (BPNN) model to predict TLKM stock price in the future. The result shows that the best ARIMA 
model, selected based on the least AIC value, is ARIMA(0,1,3) with a MAPE value of 1.20%. Meanwhile, the best 
BPNN model selected from the smallest testing MSE value, is BPNN(1,3,1) with a MAPE value of 1.17%. Among 
those two models, the BPNN model is more accurate because it has less MAPE value compared to the ARIMA one. 

As a recommendation for further research, consider using the ARIMA-GARCH model to predict as well as analyze 
stock price volatility. Additionally, the use of other activation functions can be explored, such as Hyperbolic Tangent. 
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