
 

Available online at 

https://journal.rescollacomm.com/index.php/ijqrm/index  

International Journal of Quantitative Research and 

Modeling 

Vol. 2, No. 2, pp. 67-74, 2021 

 

 

 

 

 

Al Jazari Journal of 

Mechanical 

Engineering 

 

ISSN: 2527-3426 
 

 

 

Al Jazari Journal of 

Mechanical 

Engineering 

 

ISSN: 2527-3426 
 

 

e-ISSN 2721-477X 

p-ISSN 2722-5046 

Bifurcation Analysis and Electronic Circuit for  

Sprott Jerk System   

 

R. Apip Miptahudin 
 

Department of Electrical Engineering, Universitas Pertahanan, Indonesia 
* Corresponding author email: apip.miptahudin@idu.ac.id 

  

Abstract 

In this paper, the Sprott jerk system based quadratic function is presented. The dynamics of this system is 

revealed through equilibrium analysis, phase portrait, bifurcation diagram and Lyapunov exponents. The 

Sprott system can exhibit a chaotic attractor, which has complex dynamic behavior. Finally, the circuit 

implementation is carried out to verify the Sprott Jerk system.  The comparison between the MATLAB and 

MultiSIM simulation results demonstrate the effectiveness of the Sprott system.  
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1. Introduction 

Chaos theory has been developed in various disciplines such as robotic (Oliveira et al., 2017; 

Vaidyanathan  et al., 2017), biology (Stollenwerk et al., 2017; Vaidyanathan et al., 2018), financial 

risk model (Xiao-Dan et al., 2013; Sukono et al., 2020), medical (Anter and Ali, 2020; Belazi et al., 

2019), field-programmable gate array (Sambas et al., 2021a; Vaidyanathan et al., 2021), electronic 

circuit (Johansyah, 2021; Rusyn and Purwandari, 2020; Sambas et al., 2020; Sambas et al., 2019; 

Mobayen et al., 2021), FitzHugh-Nagumo chaotic neuron models (Baladron et al., 2012; Luo et al., 

2010; Zhang and Liao, 2017), radar antenna (Kumar and Sahu, 2016; Zhang et al., 2014), magnetic 

vortex oscillations (Petit-Watelot et al., 2012; Devolder et al., 2019; Moon et al., 2014) and voice 

encryption (Mobayen et al., 2019). 

Wei et al. (2015) proposed chaotic Jerk system with single non-hyperbolic equilibrium and show 

that the periodic orbit bifurcation. Li et al. (2016) proposed hypogenetic chaotic jerk flows with 

complete feedback and amplitude control. They show that the system is symmetric coexisting 
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attractors from an asymmetric structure. Kengne et al. (2017) presented novel autonomous jerk 

circuit with single semiconductor diode. They show that the system has antimonotonicity behavior 

and period doubling bifurcation. Rajagobal et al. (2018) analyzed chaotic jerk system with non-

hyperbolic equilibrium and investigate the time-delay effects on the proposed system.  Mboupda 

Pone et al. (2019) presented chaotic Toda jerk oscillator with with an exponential nonlinear term. 

They show that the system has generate antimonotonicity, periodic oscillations, chaotic oscillations 

and bubbles. Sambas et al. (2021b) contructed a new chaotic Jerk system with two saddle-focus 

equilibrium points and proposed backstepping technique for controller in chaotic signal. However, 

some of the literature above needs to be developed again to be able to discuss it further. 

In this study, the Sprott model is introduced and its dynamical properties are investigated. In 

Sec. 2, the existence of chaotic behavior in this system is demonstrated. In Section 3, we determine 

complex behavior, and introduce the MultiSim platform, together with the electronic circuit schema 

of the system. 

2. Mathematical Model and Dynamical Analysis 

A famous dissipative quadratic jerk chaotic system (Sprott, 1997) is given by the differential 

equation  

    

0x ax xx x     (1) 

 

Sprott showed that the differential equation (1) displays chaotic behaviour when a = 2.017. 

In system form, Sprott’s quadratic jerk system (1) can be expressed as 

 

    

x y

y z

z az xy x





   

 

(2) 

The system (2) is a five-term Sprott Jerk system with one-quadratic nonlinearity. For numerical 

simulations, we take the initial values of the Sprott Jerk system (2) as x (0) = 0, y (0) = 0 and z (0) = 

0.1. By using Wolf (1985) algorithm, the Lyapunov exponents are (0.44999, 0.45448, -2.0125), and 

the Kaplan-Yorke dimension is DKY = 2.449. So, this system is chaotic behavior.  

For the numerical simulations of the novel jerk chaotic system (2), we have taken the parameter 

values as in the chaotic case (2) and the initial conditions as (2). Figures 1 (a) - (c) show the 

projections of the orbital space of the x-y plane, the x-z plane and the y-z plane. For the selected 

parameter set and initial conditions, the Sprott system in equation (2) present a dense strange 

attractor.  

We derived the bifurcation plots with parameter a as it governs the equilibrium points of the 

proposed system. The parameter a is varied between [2 2.25], and the local maximum of the state 

variable  is plotted as shown in Figures 2(a) and 2(b) which show the corresponding LEs of the 

system. It can be seen from Figures 2(a) and 2(b), under the change of parameter a, the chaos state 

and periodic state of the system appear alternately. 
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The equilibria of the Sprott Jerk system (2) are found by setting 0 zyx  , i. e., 

 

    

0

0

0
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z
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(3) 

 

The Sprott Jerk system has one equilibrium point E0 (-2.017, 0, 0). For the equilibrium point E0 

(-2.017, 0, 0), the Jacobi matrix becomes: 

 

    

 

0 1 0

0,0,0 0 0 1

1 0 0

J

 
 


 
  

 

 

 

(4) 

 

To obtain its eigenvalues, let det |J1-λ| = 0. Then, the characteristic equation has the following 

form: 

    

 

    

3 1    
 

 

(5) 

 

Solving the above characteristic equation, the eigenvalues are found as 

    

1 2,3

1 1
1, 3

2 2
i      

 

Here λ1 is a negative real number, λ2 and λ1 are conjugate pair of complex eigenvalues having 

positive real parts. That means the equilibrium E0 (-2.017, 0, 0) is a saddle point. So, this 

equilibrium point  is unstable 
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(a)                                                          (b)                                                             (c) 

   

Figure 1. Numerical simulation results using MATLAB, with a = 2.017 in the 

(a) x-y plane, (b) x-z plane, and (c) y-z plane 

 

  
 

      (a)        (b) 

 

Figure 2. Dynamics of the proposed system with the variation of the parameter a:  

(a) Lyapunov exponents (LEs); (b) Bifurcation diagram  

 

 

3. Electronic Circuit 

The circuit in Fig. 3 has been designed by using methods in (Sambas et al., 2020; Sambas et al., 
2021a), which are based on five operational amplifiers. As can be seen in Fig. 3, X, Y and Z are the 
voltages at the operational amplifiers U1, U2 and U3. 

For circuit implementation, we rescale the state variables of the Sprott Jerk system (2) as follows: 
X = 1/5 x, Y = 1/5 y, Z = 1/5 z. The rescaled chaotic system is given as follows: 

 

    
5

X Y

Y Z

Z aZ xy x





   

 

 

 

(5) 
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Applying the Kirchhoff laws, the circuit presented in Figure 3 is described by the following 

equations: 
 

    

1 1

2 2

3 3 3 4 3 5

1

1

1 1 1

X Y
C R

Y Z
C R

Z Z XY X
C R C R C R





   

 

 

 

 

 

(6) 

 
We get the value of electronic components R1 = R2 = R5 = 400 kΩ, R3 = 198.3 kΩ, R4 = 80 kΩ, R7 

= R8 = R9 = R10  = 100 kΩ, and C1 = C2 = C3 = 1 nF.  Figure 4 illustrates phase portraits which are 
obtained from the designed circuit.  As it can be seen from the MultiSim outputs in Figure 4 and 
MATLAB simulation in Figure 1, the results are similar. 
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Figure 3. The electronic circuit designed for the Sprott jerk system 

 

   
(a) (b) (c) 

 

Figure 4. Multisim outputs of the in the Malasoma system (a) X-Y plane, (b) X-Z plane, and (c) Y-Z plane 

 

4. Conclusion 

In this study, we have studied a Sprott Jerk model with quadratic function which is obtained 

obtained by Sprott (1997). Dynamical properties of this model were analyzed by the help of 

Lyapunov exponents' spectrum and bifurcation diagram. Finally, the MATLAB simulations and 

MultiSim simulation are performed to verify the theoretical model. For hardware electronic circuit 

can be investigated in our future works. 
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