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Abstract

Fibonacci numbers, Lucas numbers and Mulatu numbers are built in the same method. The three numbers differ in
the first term, while the second term is entirely the same. The next terms are the sum of two successive terms. In
this article, generalizations of Fibonacci, Lucas and Mulatu (GFLM) numbers are built which are generalizations of
the three types of numbers. The Binet formula is then built for the GFLM numbers, and determines the golden ratio,
silver ratio and Bronze ratio of the GFLM numbers. This article also presents generalizations of these three types of
ratios, called Metallic ratios. In the last part we state the Metallic ratio in the form of continued fraction and nested
radicals.

Keywords: GFLM numbers, Fibonacci numbers, Lucas numbers, Mulatu numbers, Binet formula, Golden ratio,
Silver ratio, Bronze ratio, Metallic ratio, continued fraction, nested radicals.

1. Introduction

Fibonacci numbers are found by Leonardo Fibonacci. Fibonacci was born in Pisa in 1170 (Koshy,
2001; Kalman, and Mena, 2003; Falcon and Plaza, 2007). The n—th Fibonacci numbers is the sum of the
numbers of the two previous terms where n > 2 and the first and second terms are 0 and 1. In addition to
Fibonacci numbers, there are Lucas and Mulatu numbers where the n-—thterm with n > 2 is the sum of
the numbers of the two previous terms, so that Lucas and Mulatu numbers have the same recursive
function as Fibonacci humbers (Patel, D., and Lemma, 2011; Lemma et al., 2016; Lemma, 2019).

Lucas's numbers was found by Francois Edouard Anatole Lucas (Koshy, 2001). Lucas's humbers is
obtained by taking the two initial terms, the 0-th term is 2 and the 1st term is 1. Mulatu numbers were
discovered by Lemma Mulatu and published in 2011 (Mulatu, 2016). Mulatu numbers is obtained by
taking two initial terms, the 0-th term is 4 and the 1st term is 1.

Interesting properties of Lucas's numbers have been reviewed by Lemma (2011). Schneider (2016)
discusses the golden ratio in the form of continued fraction and nested radicals. Whereas Sivaraman
(2020) developed Metallic ratio which is a generalization of three types of ratios namely Golden, Silver
and Bronze ratios.

Similarities in the formation of Fibonacci numbers, Lucas and Mulatu numbers produce ideas to obtain
new numbers which are generalizations of the three. The resulting generalization also produces other
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numbers that have not yet been found. Interesting properties of the new numbers are examined in this
article and the results are obtained that these properties have been attached to Fibonacci, Lucas and
Mulatu numbers.

2. Research Methodology

The purpose of this study is to find a sequence of numbers which is a generalization of rows of
Fibonacci, Lucas and Mulatu numbers. Interesting properties of the new sequence numbers are examined
in the article. The steps taken to achieve these two objectives are:

1. define a new sequence of numbers which is a generalization of Fibonacci Lucas and Mulatu
numbers. This new sequence of numbers is called Generalization of Fibonacci-Lucas-Mulatu
(GFLM) numbers;

2. shows that the solution of the GFLM numbers recursive relation is a, =C;-(r)" +C, -(r,)";

3. build the Binet formula for GFLM numbers and show that the formula produces the Binet formula
for Fibonacci, Lucas and Mulatu numbers;

4. shows that the ratio of two consecutive terms in the GFLM number converges to the golden ratio;
establishing a silver ratio and a bronze ratio for the GFLM numbers;

5. build a Metallic ratio of order for GFLM numbers. This section also discusses several special cases
related to Metallic ratio; and

6. states the Metallic ratio in the form of continued fractions and nested radicals.

3. Results and Discussion
3.1. The Fibonacci-Lucas-Mulatu (GFLM) Numbers

Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584,
4181, ... (Fernando and Prabowo, 2019). Lucas numbers are 2: 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199,
322, 521, 843, 1364, 2207, 3571, 5778, 9349, ..... (Koshy, 2001). Mulatu numbers are 4, 1, 5, 6, 11, 17,
28,45, 73, 118, 191, 309, 500, 809, 1309, 2118, 3427, 5545, 8972, 14517, ... (Mulatu, 2016). The three
types of numbers have the same formation pattern, namely the recursive formula in Equation (1):
P,=P4+P_;n>2 (@D

where
1. Py=0and P, =1 for Fibonacci numbers;

2. Py=2and P, =1 for Lucas numbers; and
3. By=4and R =1 for Mulatu numbers.

The 2-nd term for the three types of numbers is 1. Whereas the first term can be stated with 2k where
k=0,1,2. For k=0,1,2,3,4,....0btained the Fibonacci-Lucas-Mulatu (GFLM) numbers:
2k,1, 2k +1,2k + 2,4k + 3,6k +5,10k +8,16k +13,26k +21,..... )

Definition 1. The Fibonacci-Lucas-Mulatu (GFLM) numbers is a sequence of numbers obtained by a
recursive formula P, =B, ; +P,_,;n>2where By =2k; k=0,1,2,3,4,....and P, =1.

The GFLM numbers are extensions of Fibonacci, Lucas and Mulatu numbers. In other words, the
three numbers are a special case of the GFLM numbers. Here are the first 16 terms for those obtained
from Equation (2) or Theorem 1.
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Table 1. Fibonacci, Lucas and Mulatu numbers are obtained from GFLM numbers

0]1]1]2|3 |5 |8 13121 |34 |55 |89 |144 |233 |377 |610
314 |7 |11]18 |29 |47 |76 |123 | 199 | 322 |521 | 843 | 1364

1
2/4(1]5]6(11 |17 |28 |45 |73 | 118 | 191 | 309 | 500 | 809 | 1309 | 2118

N
[ERY

K
K

One of the conveniences of recursive relations is that the equation in Definition 1 can be stated
repeatedly:
I:)n = I:’n—l + Pn—z
=Ft (Pn—S + Pn—4)
=Ft Pn—3 + (Pn—5 + Pn—s)
=Ft Pn—3 + Pn—5 + (Pn—Y + Pn—8)
and so on.

Note the GFLM numbers in Equation (2). The recursive equation for (2) is given in Definition 1, i.e.
P,=P,1+P_;n>2where By =2k ; k=0,1,2,3,4,....and P, =1, we get
P =R +R
P,=P,+PR
P,=R+P,=P,+P + R
Pb=P,+P=P,+P,+PR
Ps=P+P, =R, +P,+R +PR,
PP=P+PF=F+P,+R+R
PR=P+PF=P+P+P+P +F,
and so on.

Proposition 1. If N is an odd number, then Py =P, +P, + P, +....4+ Py_;where R, =1.
Proposition2. If Nis an even number, then Py=R+P+P+PR+...4+Py_whereR,=2k;

So, if Nis an even number, then the N —th GFLM numbers is the sum of odd terms of GFLM
numbers fourth (N —1)—th plus 0-th term. If N is an odd number, then the N —th GFLM numbers is the
sum of even terms of GFLM numbers fourth (N —1)—th plus first term.

3.2. Recursive Relation

Homogeneous Linear Recursive Relations with Constant Coefficients (HLRRCC) is equation
f(n)=0 with all terms in a one-rank recursive relation, not multiplication of several terms, and the
coefficient of all terms is a constant. HLRRCC with order k —th given in Equation (3)

a,=C-a,,+C,-a, ,+...4C, -a,_ (3)

a,: n-th term; C,;,C,,....C, : constant andC, =0

The n-th term of Fibonacci numbers, Lucas, and Mulatu numbers is the sum of the numbers of the
two previous terms wheren>1. The three types of numbers are HLRRCC second order that satisfies
Equation (4)

,=a-a,,+f-a,, (4)
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a,: n-th term; «,f: nonzero real constant.
The solution of Equation (4) is sought by assuming a, = r?so we get Equation (5)
r’—a-r-f=0 (5)

. - 1 i * ’
Real roots of quadratic equation (5) are expressed with r,, thatisr, , = #

The recursive relation of Equation (5) can be formed into the general solution of the recursive
relation. Proof of a general solution of the recursive relation can be seen in Theorem 1.

Theorem 1. Suppose that r, and r, the solution differs from the equation r?-a-r—4=0, where
a,peRand p=0. Every solution from HLRRCC a,=a-a,,;+f-a,, has a solution from its

recursive relation, i.e. a, =C;-(r)" +C, - (r,)"

Proof: We will show that a,=«-a,;+p-a,., has the solution of the recursive relation is

a,=C,-(n)"+C,-(r,)". Theorem 1 can be proved by means of an equation a,=C,;-(r)" +C,-(r,)"
substituted into Equation (4).Note that,
an =a'an—l+ﬂ‘an—2

an=a- [0 () 4o () e Bl () P+ Gy (1)
a,=C-(n)" (@ n+8)+Cy () (a1, + B)
a,=GC;- (H)n_z(ﬁ)z +C, ‘(rz )n_z(rz )2

2, =C;- (1) +Cy - (1)
So, it is proven that HLRRCCa, =«-a,,+3-a, ,have a solution of a recursive relation is

8,=C-(n)' +C; ()"

3.3. Fibonacci, Lucas, and Mulatu Numbers

Fibonacci, Lucas, and Mulatunumbers have the same equation i.e.:

an = an71 + an72 (6)
Equation (6) can be changed to Equation (5) with real roots, i.e.r, andr, are
1++5 1-45
== andr, ==—— (7)

Fibonacci numbers have two initial terms, ie. Fy=0 and F=1. Values C, and C,in
a,=C,-(r)" +C,-(r,)" on the Theorem 1 for Fibonacci numbers are expressed with C,-and C, . For
n=0and n=1, substitute on a, =C,-(r,)" +C, - (r,)" obtained

Cir+Cr =0 (8)
1+45 1-45
cl{+ j CZF( ; J ©)
With elimination method, the solution of Equations (8) and (9) are C, = % and C,¢ = —% . So,

the equation of the Fibonacci number to n—th term is
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1(14+5) 1 (1-v5)
F E[TJ E{T] o

Lucas's number has two initial terms namely L, =2 and L, =1. In the same way, obtained C,, = 1 and
C,, = 1. So, the equation of the Lucas number to n—th term is

n n
2 2
Mulatu numbers have two initial terms, i.e. My;=4 and M, =1. The coefficient of Mulatu numbers
are Cyy = 10_5‘/5 and Cyy = @ So, the equation of the Mulatu number to n—th term is
n n
" :10—\/5(1+\/§j +10+\/§(1—\/§] 12)
5 2 5 2
Write ¢= 1+2‘/§ and 1—¢=#, then Equations (10), (11), and (12) respectively can be expressed
with
1 1
Fo=—=¢"-——=(1-9) 13
=g \/g( o) (13)
Ly =¢"+{1-¢) (14)
10-y5 , 10++/5
My == +=o—-¢) (15)

Equations (13), (14), and (15) respectively are Binet formulas for Fibonacci numbers, Lucas, and Mulatu.
In general, Binet formula can be stated with

P,=C,-¢"+C,-(L-9¢) (16)

3.4. Golden Ratio on the GFLM Numbers

For the GFLM numbers (2): 2k,1,2k+1,2k +2,4k +3,6k +5,10k +8,16k +13,......with the first and
second terms are Py =2k;k=012,....and P, =1. From Equation (16), for n=0and n =1 obtained

Cr-¢°+Cy-(L-¢)f =2k

(17)
C, ¢ +Cy-(1-9) =1

The solutions of Equation (17) are Clzw and C, _122%d By taking ¢=ﬁ, then
1-2¢ 1-2¢ 2
cFM and C, R P
V5 NG

. 1 1

1. For k =0 obtained constant C, =—=C, and C,=——~==C
1 \/g 1F 2 \/g 2,F

2. For k=1 obtained constant C, =1=C;, and C,=1=C,,
3. For k=2 obtained constant C, =@=CwI and C, _10 ;JE =Cym

Referring to Equation (16), the n—th term from the GFLM numbers on Equation (2) or Definition 1
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can be stated by Equation (18) which is the Binet formula for the GFLM numbers

P, (%V(%JW)

n=0123,...; vk=0,123,... (18)

1-v5

Because 1_¢:T:_0'618' then —1<1-¢<1. For n— oo, Obtained (1-¢)" —0. This result is used to

prove theorem 2.

Theorem 2. The ratio of two consecutive terms in the GFLM number converges to the golden ratio, viz

[k\/g—k+l}¢n+l+{k\/§+k—1}(1_ poi

I:)n+1_ \/g ‘/g _¢n+l_¢
P, (KkV5—k+1) ., (kB+k-1 . P
EEREE™

Define operator Ewith E'(P,)=P,,,; n>0 and r>0. Note that E°(R,)=P,, EX(P,)=P,,;,and
E?(P,)=P,,,. Therefore, P,,, =E?(P,)=E? P,,,=EYP,)=E'=E; and P,=E°(P,)=E° =1. From the
GFLM numbers in Definition 1

I:’n = IDn—l + Pn—Z
I:’n+2 = I:’n+1 + I:’n
I:’n+2 - Pn+1 - I:’n =

0
E*(P)-E'(R,)-E°(R)=0
0

(EZ—E—lXPn)z
, R , , +
The last equation (EZ—E—lXPn)zo is similar to m*-m-1=0 with a solution m:1_2\/§. One
solution is called the Golden ratio ¢_1+\/— Another solution is 1- ¢_ﬁ As a result, the GFLM

number in Definition 1 is B, =P,_; + B,_, can be written as Eq. (19)
P,=C,-¢"+C,-(1-¢)" ;n>0 (19)
In the next section we will build a new line that is raised from the GFLM number. From these new

numbers, two ratios are called the Silver ratio and the Bronze ratio. In the next section, a Metallic ratio is
built which is a generalization of the ratio of gold, silver and bronze.

3.5. Silver Ratio on the GFLM Numbers

Consider at the sequence of numbers in (20):
2k,1, 2k + 2,4k + 5,10k +12, 24k + 29,58k + 70,140k +169,...... (20)

For k=0,1,2 obtained the numbers in Table 2. The ratio of two consecutive numbers for Table 2
converges to 2.4142.

Table 2. Fibonacci numbers, Lucas and Mulatu Order 2
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0 1 2 5 12 |29 |70 169 | 408 | 985 | 2378 | 5741 13.860
2 1 4 9 22 |53 |128 |309 | 746 | 1801 | 4348 | 10.497 | 25.342
4 1 6 13 |32 |77 |186 |449 | 1084 | 2617 | 6318 | 15.253 | 36.824

x|x|x
I
N o

Rows of humbers (20) can be stated recursively with Equation (21):
P,=2P,,+P,_,;n>2 (21)
where Py =2k;k=0,1,2,3,....and PR, =1
With operator E, Equation (21) is equivalent to (E2—2E—1XPH)=O which is also equivalent to
m?—2m-1=0. The solution of the last equation is m=1++/2 and solution m=1++2 called the silver
ratio, symbolized 4=1++2=2.4142. Consider that another solution is 2—1=1-+2 . As a result,
P, =2P, , +P,_, it can be written as Eq. (22)
P,=C-A"+C,-(2-4)";n>0 (22)
Limit the ratio of two consecutive numbers in (20) converging to silver ratio. Because -1<2-1<1,
then (2—4)" -0 for n—oo. Obtained ratio
P _ G A" +Cy - (2-2)" A 4C,-0 .
P C,-A"+C,-(2-4) C,-A"+C,-0

3.6. Bronze Ratio on the GFLM Numbers

Consider at the sequence of numbers in (23):
2k,1, 2k + 3,6k +10,20k + 33,66k +109,152k + 251,...... (23)

For k=0,1,2 obtained by the numbers in Table 3. The ratio of two consecutive numbers tok =0,1, 2 in
Table 3 converge towards 3.3028.

Table 3. Fibonacci numbers, Lucas and Mulatu Order 3

0 |1 |3 |10 |33 |109 | 360 | 1189 | 3927 | 12.970 | 42.837 | 141.481 | 467.280

2 |1 16 |53 | 175 | 578 | 1909 | 6305 | 20.824 | 68.777 | 227.155 | 750.242

(¢, ]

4 |1 |7 |22 |73 |241 | 796 | 2629 | 8683 | 28.678 | 94.717 | 312.829 | 1.033.204

x| x|x
Il
NP O

Rows of numbers (23) can be stated recursively with Equation (24):
P =3P, P, _,:n>2 (24)
where By =2k;k=0,1,2,3,....and P, =1

With operator E, Equation (24) equivalent to (E2—3E—1XPn)=O which is also equivalent to

m?—-3m-1=0. The solution of the last equation is m=3‘2 13 and solution m:3+2 13 called the
. . Vi . . —-+1
bronze ratio, symbollized u=3+2 3 =3.3028. Consider that another solution is 3—u= 3 ;/_3 . As a

result, P, =3P,_; +P,_, can be written as Eq. (25)
P,=C-u"+C,-(3-p)";n>=0 (25)
Limit the ratio of two consecutive numbers at (25) converging to Bronze ratio. Because —1<3—u<1
then (3—u)" —0 for n—oco. Obtained ratio



Agung Prabowo et al./ International Journal of Quantitative Research and Modeling, Vol. 1, No. 3, pp. 112-122, 2020 119

Poaa _ C,- 4" +C, '(3_,U)n+l _ C,- 4" +C, -0

P, C,-u"+C,-(3-a) C,-u"+C,-0

3.7. Metallic Ratio on the GFLM Numbers

We have obtained three types of ratios namely the ratio of Gold, Silver and Bronze with successive
values is ¢#=1.618 ; 1=2.4142 ; and «=3.3028. The three types of ratios are special cases of Metallic

Ratio.
Define recurrence relations in Equation (26)
P =t-P,+P , ;n>2 t=123... (26)
where Py =2k;k=0,1,23,...and P, =1

With operator E, we get (Ez—tE—l)Pnzo. The auxiliary equation is m?-tm-1=0 which is a

. o : +4t? : Jt? o
quadratic equation with a solution m,, :# . Solution m =¥ called Metallic ratio of order
[+2 _ .2
t and symbolized with p, zw, t=1,2,3,.... Another root is written t— p, :#.

3.7.1. Special Case
Metallic ratios of order 1, 2 and 3, respectively, are Golden, Silver and Bronze ratios. The name
follows the medal on the Olimpycs.

1++/5

1. If t=1, then we get p, = 5 =¢, the Golden ratio

2
2. If t=2,then we get p, =¥=1+\/§=A, the Silver ratio
3. If t=3, then we get p; = 3+;/E = u , the Bronze ratio

3.7.2. The Infinite Small Order Converge to Zero

For any real number t which is very small, we can write t:ir, where gis large and r >0. In this
q

o . 1+41+49%
case, the Metallic ratio by order twill take the form p, :%. For g—« so that t -0 and
q

1+41+49% N :
£t :ﬁzl-i+l 4+i2 —>£~0+1\/4+0 =1. Thus, Metallic ratio approach 1 when t is very
2q" 2 g 2 q-" 2 2

small with order t=q™"

2
:1+\ll+4q q=12.3,.

2q

For r=1 so that t= ...called Platinum ratio. For r=2 then

C1+41+4q"

p1 =——— q=12,3,.... called Rhodium ratio.

¢ &

= and p
q

o
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For example tl:ir1 and t, :irz. For r,>r, then q">q" and t, >t,. That is, the bigger r then
q q

/ 2r
t:irfaster towards 0. Accordingly, for g the same, Metallic ratio p, :% will be faster
q q
towards 1 for r the greater one. So, the Rhodium ratio is faster to 1 than the platinum ratio.

[ 2
Now we review for r =1 which produce Platinum ratio p, =% forq=12,3,....Take q=10
q

and q=100 Obtained p, =14 g os124920and  p, =IO 05015, Thus,
5 20 00 200
Platinum ratio faster towards 1 for f bi%g‘eﬁajﬁ4 es. 1+ /1340000
For r=2, Rhodium ratio p, == V""" For q=10 obtained p , ==Y~ """ =1,0050125. For

. P . . TP 1
this case, we get the result thatghe Plati®flim ratio and Rhodium ratio aresthe samé%0

3.7.3. The Infinite Big Order
For t large, Metallic ratio will increase. We get, for t —

CtVt+4 ~t+\/t_2=§=t

T 2 2
Thus, for t >0then p, —»1and for t >wothen p, >t

3.7.4. The Ratio of the Metallic Ratio
Now we will compare the ratio of the Metallic ratio with successive orders:

(t+l)+ (t+1) +4 (t+1)+m

pt+l: 2 — zlt—)OO
Py tet? 14 trt2+4
2

That is, for t larger, the k -th Metallic ratio is almost identical to ( k +1)-th Metallic ratio.

3.8. Expressing Metallic Ratio in Continued Fractions

t+Vt?+4
—
Consequence of m? —tm—1=0o0btained p?—t-p, —1=0 or p? =1+t-p, . If the two segments are divided

Consider the Equation m?—-tm-1=0 with one solution is the Metallic ratio, ie p, =

. 1
by p, obtained p, =1+—
P

Proposition 3. The Metallic ratio is equal to its own reciprocal plus 1:

1
o =1+—,1=123,....
Pt

We can express Metallic ratio in the form of continued fraction. Note that
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pt=1+i=1+ ll =1+ 11 =1+ 11 =...
Pt 1+— 1+ 1 1+7l
Pt 1+ — 1+
Pt 1+i
Pt

Proposition 4. We can write the Metallic ratio as an infinite continued fraction with all coefficients
equal to 1 except the last coefficinet:
1
1

1+;

1+1

P =1+
1+

, 1=1,2,3,....

3.9. State the Metallic Ratio in the Nested Radical Form

t+Vt?+4
2
Consequence of m? —tm—1=0o0btained p?—t-p, —1=0 or p?=1+t-p, . If both segments are drawn, the

roots are obtained p, =,/1+t- p,

Consider the Equation m?*-tm—1=0 with one solution is the Metallic ratio ie p, =

Proposition 5. The Metallic ratio is equal to the square of itself plus 1:

pr=41+t-p, t=123,....

We can express Metallic ratio in the form of nested radical. Note that for t=1,2,3,.... applies:

=1+t p
=1+t 1+t p, :\/1+t~1/1+t~,/1+t~pt =\/1+t~\/1+to,ll+'[~,/1+'[-pt =...

Proposition 6. The Metallic ratio is equal to

2
JRUSER CE SV SN OO VN o v
2 R

1+
1+i
Pt

4. Conclussion

In this article, we generalize to three types of numbers namely Fibonacci numbers, Lucas numbers and
Mulatu numbers. The result is a new number that we call the GFLM numbers. The interesting properties
of the GFLM we describe in this article include the Binet formula for the GFLM number, and the golden
ratio, the silver ratio and the Bronze ratio of the GFLM number. We also present generalizations of these
three types of ratios, called Metallic ratios. In the last part we state the Metallic ratio in the form of
continued fraction and nested radicals.
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