Expert System for Early Diagnosis of Epilepsy Using the Web-Based Dempster Shafer Method

Rulla Aliyah Zulfa, Asep Saepulrohman, Lita Karlitasari

Abstract


The development of information and communication technology is currently very extensive in its use, especially technology in the field of computers. Expert Systems are one of the sciences in the field of computers that can help in diagnosing various diseases, one of which is epilepsy. The estimated number of epilepsy sufferers in Indonesia is 1.5 million with a prevalence of 0.5-0.6% of the Indonesian population. The expert system method used to diagnose epilepsy early is the Dempster Shafer method. The Dempster Shafer method is used to combine separate pieces of information or evidence to calculate the probability of an event. This study used 7 types of epilepsy, including in the Focal Epilepsy category consisting of Simple Partial and Complex Partial, while in the General Epilepsy category consisting of Absence, Atonic, Myoclonic, Tonic-Clonic, and Clonic. This study produces a website-based application for early diagnosis of epilepsy using the Dempster Shafer method with the PHP programming language and MySQL database. By using this application, it can provide convenience to the medical community and patients in early diagnosis of epilepsy experienced by sufferers. From the results of this study, it was found that the highest level of accuracy was found in Tonic-Clonic seizures which are included in the General Epilepsy category, namely 92.78%.

Keywords


Expert System, Early Diagnosis, Epilepsy, Dempster Shafer Method

Full Text:

PDF

References


Agus, Michael. 2021. Hari Epilepsi Sedunia. https://pantirapih.or.id/rspr/tag/hari-epilepsi-sedunia/. July 16, 2024.

Agustin, Erlina, Ade Eviyanti, dan Nuril Lutvi Azizah. (2023). Deteksi Penyakit Epilepsi Melalui Sinyal EEG Menggunakan Metode DWT dan Extreme Gradient Boosting. Jurnal Media Informatika Budidarma, 7(1), 117-127.

Batubara, H. H. (2018). Pembelajaran Berbasis Web dengan Moodle Versi 3.4.Yogyakarta: Deepublish Publisher.

Fadhilah, Muhammad Rafi, dan Agung Triayudi. (2024). Penerapan Metode Dempster Shafer dalam Mendiagnosa Penyakit Pneumonia. KLIK: Kajian Ilmiah Informatika dan Komputer, 4(4), 2169-2178.

Hastari, Dina, I Gede Pasek Suta Wijaya, dan Fitri Bimantoro. (2018). Sistem Pakar Diagnosa Gangguan Mental pada Anak dengan Metode Dempster Shafer. Journal of Computer Science and Informatics Engineering (J-Cosine), 2(2).

Johan, T. M. (2021). Sistem Pendeteksi Epilepsi Dengan Algoritma K-Means Clustering Sebagai Pendeteksi Penyakit Berbasis Sistem Pakar Pada Masa Pandemi Covid-19. Jurnal Tika, 6(02), 173–183.

Mahesa, Faisal Anggi, dan Sulindawaty. (2021). Sistem Pakar Mendiagnosa Penyakit Epilepsi Menggunakan Metode Dempster Shafer. Jurnal Nasional Komputasi dan Teknologi Informasi, 4(6).

Mandasari, Febrianti, Antoni, dan Tasliyah Haramaini. (2022). Aplikasi Diagnosa Epliepsi dengan Metode Certainty Factor pada Rumah Sakit Umum Daerah Kota Pinang. Bulletin of Computer Science Research, 2(3), 93-99.

Muharni, Sita, dan Sigit Andriyanto. (2021). Sistem Diagnosa Penyakit Jantung Berbasis Case Based Reasoning (CBR). Institut Informatika dan Bisnis Darmajaya.

Mulaab. (2021). Deteksi Kejang Epilepsy dengan Menggunakan Pemilihan Fitur Informatioan Gain dan Pembelajaran Ensemble Random Forest. Jurnal SimanteC, 9(2).

Mustaqim, M., Galih Rakasiwi, dan Agus Iskandar. (2024). Perbandingan Metode Dempster Shafer Dan Teorema Bayes Untuk Mendeteksi Penyakit Ensefalitis. Jurnal Media Informatika Budidarma, 8(1), 546-554.

Nasyuha, Asyahri Hadi, Moch. Iswan Perangin Angin, dan Marsono. (2020). Implementasi Dempster Shafer Dalam Diagnosa Penyakit Impetigo Pada Balita. Jurnal Media Informatika Budidarma, 4(3), 700-706.

Romadhona, Defara Millenia. 2022. Epilepsi: Penyebab, Gejala, Jenis, Diagnosis, Komplikasi, dan Cara Mengobati. https://www.orami.co.id/magazine/epilepsi#google_vignette. May 02, 2024.

Saputra, Alhadi. (2012). Manajemen Basis Data Mysql Pada Situs FTP Lapan Bandung. Berita Dirgantara, 13(4), 155-162.

Susilawati, Indri, dan Rahma Yuni Simanullang. (2023). Sistem Pakar untuk Mengidentifikasi Penyakit ITP (Idiopathic Thrombocytopenic Purpura) melalui Pendekatan Dempster Shafer. JIKTEKS : Jurnal Ilmu Komputer dan Teknologi Informasi, 1(3), 17-24.

Susilo, Muhammad, Rezki Kurniati, Kasmawi. (2018). Rancang Bangun Website Toko Online Menggunakan Metode Waterfall. InfoTekJar (Jurnal Nasional Informatika dan Teknologi Jaringan), 2(2).

Yuliano, Triswansyah. (2017). Pengenalan PHP. Komunitas eLearning IlmuKomputer.Com.

Yuliyana, dan Anita Sindar Ros Maryana Sinaga. (2019). Sistem Pakar Diagnosa Penyakit Gigi Menggunakan Metode Naive Bayes. Fountain of Informatics Journal, 4(1).




DOI: https://doi.org/10.46336/ijbesd.v5i3.735

Refbacks

  • There are currently no refbacks.


Add comment

Copyright (c) 2024 International Journal of Business, Economics, and Social Development

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Published By: 

IJBESD: Jalan Riung Ampuh No. 3, Riung Bandung, Kota Bandung 40295, Jawa Barat, Indonesia


IJBESD Indexed By:

width=width=width= width= width= width= 

 

Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.