A COMPARATIVE STUDY OF SOME MODIFICATIONS OF CG METHODS UNDER EXACT LINE SEARCH

Yasir Salih, Mustafa Mamat, Sukono Sukono

Abstract


Conjugate Gradient (CG) method is a technique used in solving nonlinear unconstrained optimization problems. In this paper, we analysed the performance of two modifications and compared the results with the classical conjugate gradient methods of. These proposed methods possesse global convergence properties for general functions using exact line search. Numerical experiments show that the two modifications are more efficient for the test problems compared to classical CG coefficients.

Keywords


Conjugate Gradient Method; unconstrained optimization; exact line search

Full Text:

PDF

References


Andrei N. (2008). An unconstrained optimization test functions collection. Adv. Model. Optim, 10(1): p. 147-161.

Dolan E.D and Moré JJ. (2002). Benchmarking optimization software with performance profiles. Mathematical programming, 91(2): p. 201-213.

Fletcher R and Reeves C M. (1964). Function minimization by conjugate gradients. The computer journal, 7(2): p. 149-154.

Fletcher R. 1980. Practical methods of optimization. Vol. 1, Unconstrained Optimization.

Hamoda M, Rivaie M and Mamat M. (2017). A New Nonlinear Conjugate Gradient Method With Exact Line Search For Unconstrained Optimization. Journal of Humanities and Applied Science (JHAS), pp. 1-16.

Hestenes MR and Stiefel E. (1952). Methods of conjugate gradients for solving linear systems. Vol. 49: NBS.

Hillstrom K.E. (1977). A simulation test approach to the evaluation of nonlinear optimization algorithms. ACM Transactions on Mathematical Software (TOMS), 3(4): p. 305-315. 1977. 3(4): p. 305-315.

Kamilu, K., Sulaiman, I. M., Waziri, M. Y., and Abashar, A. (2018). Another Improved Three Term PRP-CG Method with Global Convergent Properties for Solving Unconstrained Optimization Problems. Malaysian Journal of Computing and Applied Mathematics. 1(1), 1-10.

Liu Y and Storey C. 1991.Efficient generalized conjugate gradient algorithms, part 1: theory. Journal of optimization theory and applications, 69(1): p. 129-137.

Polyak B.T. (1969). The conjugate gradient method in extremal problems. USSR Computational Mathematics and Mathematical Physics, 9(4): p. 94-112

Polak E and Ribiere G. (1969). Note sur la convergence de méthodes de directions conjuguées. Revue française d'informatique et de recherche opérationnelle. Série rouge, 3(16): p. 35-43.

Saliha, Y., M.A. Hamoda, and M. Rivaiec. (2018). New Hybrid Conjugate Gradient Method with Global Convergence Properties for Unconstrained Optimization. Malaysian Journal of Computing and Applied Mathematics, 1(1): p. 29-38

Sulaiman, I. M., Mamat, M., Abashar, A., and Zabidin, S. (2015). A Modified Nonlinear Conjugate Gradient Method for Unconstrained Optimization, Applied Mathematical Sciences 9(54), 2671 – 2682.

Sulaiman, I. M., Waziri, M. Y., Olowo, E. S., and Talat, A. N. (2018). Solving Fuzzy Nonlinear Equations with a New Class of Conjugate Gradient Method. Malaysian Journal of Computing and Applied Mathematics. 1(1), 11-19.

Yasir, S., Mohamed, A. H., and Rivaie, M. (2018). New Hybrid Conjugate Gradient Method with Global Convergent Properties for Solving Unconstrained Optimization. Malaysian Journal of Computing and Applied Mathematics. 1(1), 29-38.

Zoutendijk G. (1970). Nonlinear programming, computational methods. Integer and nonlinear programming, 143(1): p. 37-8




DOI: https://doi.org/10.46336/ijqrm.v1i1.2

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 International Journal of Quantitative Research and Modeling

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Published By: 

IJQRM: Jalan Riung Ampuh No. 3, Riung Bandung, Kota Bandung 40295, Jawa Barat, Indonesia

 

IJQRM Indexed By: 

width= width= width= width= width= width=

 


Lisensi Creative Commons Creation is distributed below Lisensi Creative Commons Atribusi 4.0 Internasional.


View My Stats