Portfolio Analysis Using the Markowitz Model with Stock Lot Constraints and Target Returns or Without Target Returns
Abstract
Stock investment activities are inseparable from returns and risk, so an investor needs expertise to minimize investment risk. One way is by forming an optimal portfolio. The purpose of this research is to determine the number of stock lots in the optimal portfolio. This research analyzes the closing prices of stocks during the research period with the criteria of stocks being listed on the IDX30 index consecutively for 20 periods and belonging to the large cap group (the stock market capitalization exceeds $10 billion). Then the number of stock lots is calculated using the Markowitz model with stock lot constraints and target returns or without target returns. From the selected stocks, an optimal portfolio is formed using Microsoft Excel. Based on the research results, a combination of an optimal portfolio with a target return is ASII: 5, BBCA: 10, BBNI: 23, BBRI: 1, BMRI: 23, TLKM: 93, UNVR: 12, where the risk is 0,000149 and the target expected return is 0,00155. Meanwhile, the optimal portfolio without a target return is ASII: 8, BBCA: 7, BBNI: 32, BBRI: 40, BMRI: 9, TLKM: 62, UNVR: 17, where a risk is 0,000147 and the expected return is 0,00148. This research can be used as a consideration for investors in determining investment portfolios.
Keywords
Full Text:
PDFReferences
Adnyana, I. M. (2020). Manajemen investasi dan protofolio. Lembaga Penerbitan Universitas Nasional (LPU-UNAS).
Chin, L., Chendra, E., & Sukmana, A. (2018). Analysis of portfolio optimization with lot of stocks amount constraint: case study Index LQ45. IOP Conference Series: Materials Science and Engineering, 300(1), 1–6. https://doi.org/10.1088/1757-899X/300/1/012004
Hasnah, U., & Suherman. (2018). Bentuk model nonlinear untuk portofolio optimal dan penyelesaiannya menggunakan metode Separable Programming. Journal of Mathematics UNP, 3(2), 76–81.
Herlianto, D. (2013). Manajemen investasi plus jurus mendeteksi investasi bodong. Gosyen Publishing.
Lasdon, L. S., Waren, A. D., Jain, A., & Ratner, M. (1978). Design and testing of a Generalized Reduced Gradient code for nonlinear programming. ACM Transactions on Mathematical Software (TOMS), 4(1), 34–50. https://doi.org/10.1145/355769.355773
Mahayani, N. P. M., & Suarjaya, A. A. G. (2019). Penentuan portofolio optimal berdasarkan model Markowitz pada perusahaan infrastruktur di Bursa Efek Indonesia. E-Jurnal Manajemen Universitas Udayana, 8(5), 3057–3085. https://doi.org/10.24843/ejmunud.2019.v08.i05.p17
DOI: https://doi.org/10.46336/ijqrm.v3i4.358
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Asri Rula Hanifah, Betty Subartini, Sukono Sukono
This work is licensed under a Creative Commons Attribution 4.0 International License.
Published By:
IJQRM: Jalan Riung Ampuh No. 3, Riung Bandung, Kota Bandung 40295, Jawa Barat, Indonesia
IJQRM Indexed By:
Creation is distributed below Lisensi Creative Commons Atribusi 4.0 Internasional.