Inventory Control for MSME Products Using the Q Model with Lost Sales Condition Based on Products Sales Forecasting
Abstract
Micro, Small and Medium Enterprises (MSMEs) have an important role in economic development in order to achieve thq quality of economic growth. Intense competition among MSMEs requires MSMEs to have a good inventory control that can help them minimize costs and maximize profits. One of the MSMEs that often experiences problems in inventory control is Sabun Bening Official. To solve the inventory problems in Sabun Bening Official, Holt-Winter Exponential Additive forecasting method is used as a guide to predict future product demand because product demand graph is seasonal and has trend pattern. After getting the value of product demand forecast, inventory control calucaltions are carried out using the Q Model probabilistic inventory method with lost sales condition. The uncertain and fluctuating demand causing the inventory system in Sabun Bening Official is probabilistic and the company will lose sales if it does not able to fulfill customer demands. Based on the research results, product forecasting for the coming period and inventory control policies which include the optimal number of product order, safety stock, reorder point, and product inventory costs can be obtained.
Keywords
Full Text:
PDFReferences
Astuti, M. W., Sofro, A., and Oktaviarina, A. (2018). Peramalan Penjualan Kue Pada Toko Roemah Snack Mekarsari dengan Metode Single Exponential Smoothing, Junal Ilmiah Matematika, 6(2), 70-74.
Bahagia, S. (2006). Sistem Inventori. Bandung: Penerbit ITB.
Fatma, E. and Pulungan, D.S. (2018). Analisis Pengendalian Persediaan Menggunakan Metode Probabilistik dengan Kebijakan Backorder dan Lost sales, Jurnal Teknik Industri, 19(1), 38-48
Herjanto, Eddy. (2008). Manajemen Operasi: Edisi Ketiga. Jakarta: PT. Grasindo.
Kulińska, E., Giera, J. and Kolchanov, A. (2020). The Impact of Supply Disruption on the Standing Order System in the FMCG Supply Chain The Impact of Supply Disruption on the Standing Order System in the FMCG Supply Chain 80, European Research Studies Journal, XXIII(1), 79-88.
Kushartini, D. and Almahdy, I. (2016). Sistem Persediaan Bahan Baku Produk Dispersant di Industri Kimia, PASTI, 10(2), 217-234.
Lawrence, D. Kenneth. Et al. 2009. Fundamentals of Forecasting Using Excel. Industrial Press, Inc. New York.
Makridakis, Spyros. Steven C. Wheelwright, dan Victor E. McGee. (1999). Metode dan Aplikasi Peramalan. Jakarta: Erlangga.
Mgale, Y.J., Yan, Y. and Timothy, S. (2021). A Comparative Study of ARIMA and Holt-Winters Exponential Smoothing Models for Rice Price Forecasting in Tanzania, OALib, 08(05), 1–9.
Nurhamidah, N., Nusyirwan, N. and Faisol, A. (2020) ‘Forecasting Seasonal Time Series Data Using the Holt-Winters Exponential Smoothing Method of Additive Models’, Jurnal Matematika Integratif, 16(2), p. 151.
Setyo, Tri Wahyudi (2017) Statistika Ekonomi: Konsep, Teori, dan Penerapan. 1st edn. Malang: UB Press.
Silitonga, R.Y.H., Sarim, S. and Yuli, F. (2015). Analisis Kebijakan Manajemen Persediaan Probabilistik Dengan Model Q dan P Lost Sales, Jurnal Telematika, 10(1), 27-34.
Siregar, B. et al. (2017). Comparison of Exponential Smoothing Methods in Forecasting Palm Oil Real Production. In Journal of Physics: Conference Series. Institute of Physics Publishing.
DOI: https://doi.org/10.46336/ijqrm.v4i1.417
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Dita Aulia Nissa, Sudradjat Supian, Julita Nahar
This work is licensed under a Creative Commons Attribution 4.0 International License.
Published By:
IJQRM: Jalan Riung Ampuh No. 3, Riung Bandung, Kota Bandung 40295, Jawa Barat, Indonesia
IJQRM Indexed By:
Creation is distributed below Lisensi Creative Commons Atribusi 4.0 Internasional.