The Comparison of Investment Portfolio Optimization Result of Mean-Variance Model Using Lagrange Multiplier and Genetic Algorithm
Abstract
Investment portfolio optimization is carried out to find the optimal combination of each stock with the aim of maximizing returns while minimizing risk by diversification. However, the problem is how much proportion of funds should be invested in order to obtain the minimum risk. One approach that has proven effective in building an optimal investment portfolio is the Mean-Variance model. The purpose of this study is to compare the results of the Mean-Variance model investment portfolio optimization using Lagrange Multiplier method and Genetic Algorithm. The data used are stocks that are members of the LQ45 index for the period February 2020-July 2021. Based on the research results, there are five stocks that form the optimal portfolio, namely ADRO, AKRA, BBCA, CPIN, and EXCL stocks. The optimal portfolio generated by the Lagrange Multiplier method has a risk of 0.000606 and a return of 0.000726. Meanwhile, using the Genetic Algorithm resulted in a risk of 0.000455 and a return of 0.000471. Thus, the Genetic Algorithm method is more suitable for investors who prioritize lower risk. Meanwhile, the Lagrange Multiplier method produces a relatively higher risk, making it less suitable for investors who expect a small risk.
Keywords
Full Text:
PDFReferences
Darmadji, T., & Fakhruddin, H. (2006). Pasar Modal di Indonesia. Jakarta: Salemba Empat.
Fanggidae, A., & Lado, F. R. (2015). Algoritme Genetika dan Penerapannya. Yogyakarta: Teknosain.
Hartono, J. (2016). Teori Portofolio dan Analisis Investasi. Edisi Kesepuluh. Yogyakarta: BPFE.
Haupt, R. L., & Haupt, S. E. (2004). Practical Genetic Algorithm, 2nd edition. New Jersey: John Willey and Sons.
Jogiyanto, H. (2010). Teori Portofolio dan Analisis Investasi. Edisi Ketujuh. Jakarta: Salemba Empat.
Jogiyanto, H. (2016). Teori Portofolio dan Analisis Investasi. Edisi Kesepuluh. Yogyakarta: BPFE.
Satriyanto. (2009). Algoritme Genetika. Jakarta: Duta Ilmu Press.
Sunariyah. (2011). Pengantar Pengetahuan Pasar Modal. Yogyakarta: UPP STIM YKPN.
Thakur, P., & Singh, A. (2014). Study of Various Crossover Operators in Genetic Algorithms. International Journal of Advanced Research in Computer Science and Software Engineering, 320-323.
Widodo, A. W., & Mahmudy, W. F. (2010). Penerapan Algoritme Genetika Pada Sistem Rekomendasi Wisata Kuliner. Kursor, vol. 5, no. 4, 205-211.
Zukhri, Z. (2014). Algoritme Genetika: Metode Komputasi Evolusioner untuk Menyelesaikan Masalah Optimasi. Yogyakarta: Penerbit Andi.
DOI: https://doi.org/10.46336/ijqrm.v5i1.611
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Raynita Syahla, Dwi Susanti, Herlina Napitupulu
This work is licensed under a Creative Commons Attribution 4.0 International License.
Published By:
IJQRM: Jalan Riung Ampuh No. 3, Riung Bandung, Kota Bandung 40295, Jawa Barat, Indonesia
IJQRM Indexed By:
Creation is distributed below Lisensi Creative Commons Atribusi 4.0 Internasional.