Comparative Analysis of K-Means and K-Medoids Clustering in Retail Store Product Grouping
Abstract
Full Text:
PDFReferences
Anjani, R. G. (2019). Peran Sistem Informasi Terhadap Operasional Retail. Jurnal Ekonomi Dan Manajemen Sistem Informasi (JEMSI), 1(September), 60–69. https://doi.org/10.31933/JEMSI
Arora, P., Deepali, & Varshney, S. (2016). Analysis of K-Means and K-Medoids Algorithm for Big Data. International Conference on Information Security & Privacy (ICISP), 78, 507–512. https://doi.org/10.1016/j.procs.2016.02.095
Bradlow, E. T., Gangwar, M., Kopalle, P., & Voleti, S. (2017). The Role of Big Data and Predictive Analytics in Retailing. Journal of Retailing, 93(1), 79–95. https://doi.org/10.1016/j.jretai.2016.12.004
Diana, Y., Hadi, F., Ekonomi, F., Bisnis, D., Putra Indonesia, U., Padang, Y., Lubuk, J. R., & Padang, B. (2023). Analisa Penjualan Menggunakan Algoritma K-Medoids Untuk Mengoptimalkan Penjualan Barang. JOISIE Journal Of Information System And Informatics Engineering, 7(1), 97–103.
Fatmawati, K., & Windarto, A. P. (2018). Data Mining: Penerapan Rapidminer Dengan K-Means Cluster Pada Daerah Terjangkit Demam Berdarah Dengue (Dbd) Berdasarkan Provinsi. Computer Engineering, Science and System Journal, 3(2), 173. https://doi.org/10.24114/cess.v3i2.9661
Gupta, A., Sharma, H., & Akhtar, A. (2021). A Comparative Analysis Of K-Means And Hierarchical Clustering. EPRA International Journal of Multidisciplinary Research (IJMR), 7(8). https://doi.org/10.36713/epra2013
Gustrianda, R., & Mulyana, D. I. (2022). Penerapan Data Mining Dalam Pemilihan Produk Unggulan dengan Metode Algoritma K-Means Dan K-Medoids. Jurnal Media Informatika Budidarma, 6(1), 27. https://doi.org/10.30865/mib.v6i1.3294
Hadi, F., & Diana, Y. (2020). Pengklusteran Penjualan Bahan Bangunan Menggunakan Algoritma K-Means. JOISIE (Journal Of Information Systems And Informatics Engineering), 4(1), 22. https://doi.org/10.35145/joisie.v4i1.629
Hoerunnisa, A., Dwilestari, G., Dikananda, F., Sunana, H., & Pratama, D. (2024). Komparasi Algoritma K-Means Dan K-Medoids Dalam Analisis Pengelompokan Daerah Rawan Kriminalitas Di Indonesia. Jurnal Mahasiswa Teknik Informatika, 8(1). https://doi.org/https://doi.org/10.36040/jati.v8i1.8249
Intan, S. F., Elvira, W., Rahayu, S., & ... (2023). Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan Pengeluaran Mahasiswa. SENTIMAS : Seminar Nasional Penelitian Dan Pengabdian Masyarakat, 35–40. https://journal.irpi.or.id/index.php/sentimas/article/view/543
Khanbabaei, M., Alborzi, M., Sobhani, F. M., & Radfar, R. (2019). Applying clustering and classification data mining techniques for competitive and knowledge-intensive processes improvement. Journal of Corporate Transformation, 26(2), 123–139. https://doi.org/10.1002/kpm.1595
Mayadi, Setiawati, S., & Priatna, W. (2023). Pengelompokan Hasil Survei MBKM Menggunakan K-Mean dan K-Medoids Clustering. Jurnal Media Informatika Budidarma, 7. https://doi.org/10.30865/mib.v7i1.5003
Melina, Napitupulu, H., Sambas, A., Murniati, A., & Adimurti Kusumaningtyas, V. (2022). Artificial Neural Network-Based Machine Learning Approach to Stock Market Prediction Model on the Indonesia Stock Exchange During the COVID-19. Engineering Letters, 30(3). https://www.researchgate.net/publication/362983602
Mousavi, S., Boroujeni, F. Z., & Aryanmehr, S. (2020). Improving customer clustering by optimal selection of cluster centroids in K-means and K-medoids algorithms. Journal of Theoretical and Applied Information Technology, 8(10), 3807–3814.
Murpratiwi, S. I., Agung Indrawan, I. G., & Aranta, A. (2021). Analisis Pemilihan Cluster Optimal Dalam Segmentasi Pelanggan Toko Retail. Jurnal Pendidikan Teknologi Dan Kejuruan, 18(2), 152. https://doi.org/10.23887/jptk-undiksha.v18i2.37426
Nabila, Z., Rahman Isnain, A., & Abidin, Z. (2021). Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means. Jurnal Teknologi Dan Sistem Informasi (JTSI), 2(2), 100. http://jim.teknokrat.ac.id/index.php/JTSI
Nadiyah, Arifin, N. H. I., & Karim, A. (2024). Penerapan Algoritma K-Means Untuk Clustering Penilaian Layanan Berdasarkan Indeks Kepuasan Mahasiswa Universitas Nurul Jadid. Jurnal Advance Research Informatika, 2, 23–30. https://doi.org/10.24929/jars.v2i2.3431
Nishom, M. (2019). Perbandingan Akurasi Euclidean Distance, Minkowski Distance, dan Manhattan Distance pada Algoritma K-Means Clustering berbasis Chi-Square. Jurnal Informatika: Jurnal Pengembangan IT, 4(1), 20–24. https://doi.org/10.30591/jpit.v4i1.1253
Ong, J. O., Sutawijaya, A. H., & Saluy, A. B. (2020). Strategi Inovasi Model Bisnis Ritel Modern Di Era Industri 4.0. Jurnal Ilmiah Manajemen Bisnis, 6(2), 201–210. https://doi.org/https://dx.doi.org/10.22441/jimb.v6i2.8891
Putra, R. R., & Wadisman, C. (2018). Implementasi Data Mining Pemilihan Pelanggan Potensial Menggunakan Algoritma K-Means. INTECOMS (Journal of Information Technology and Computer Science, 151(2), 10–17. https://doi.org/10.31539/intecoms.v1i1.141
Ramadhani, S., Azzahra, D., & Z, T. (2022). Comparison of K-Means and K-Medoids Algorithms in Text Mining based on Davies Bouldin Index Testing for Classification of Student’s Thesis. Digital Zone: Jurnal Teknologi Informasi Dan Komunikasi, 13(1), 24–33. https://doi.org/10.31849/digitalzone.v13i1.9292
Sani, A. (2018). Penerapan Metode K-Means Clustering Pada Perusahaan. Jurnal Ilmiah Teknologi Informasi, May, 1–7.
Septiani, S., Musthofa, & Seviawani, P. (2024). Penggunaan Big Data untuk Personalisasi Layanan dalam Bisnis E-Commerce. ADI Bisnis Digital Interdisiplin Jurnal, 5(1), 51–57. https://doi.org/10.34306/abdi.v5i1.1098
Setiawan, R. (2016). Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Untuk Menentukan Strategi Promosi Mahasiswa Baru (Studi Kasus : Politeknik Lp3i Jakarta). Jurnal Lentera ICT, 3(1), 76–92.
Takdirillah, R. (2020). Penerapan Data Mining Menggunakan Algoritma Apriori Terhadap Data Transaksi Sebagai Pendukung Informasi Strategi Penjualan. Edumatic : Jurnal Pendidikan Informatika, 4(1), 37–46. https://doi.org/10.29408/edumatic.v4i1.2081
Tarigan, D. A. (2023). Optimization of the K-Means Clustering Algorithm Using Davies Bouldin Index in Iris Data Classification. Kajian Ilmiah Informatika Dan Komputer (KLIK), 4(1), 545–552. https://doi.org/10.30865/klik.v4i1.964
Tempola, F., & Assagaf, A. F. (2018). Clustering of Potency of Shrimp in Indonesia with K-Means Algorithm and Validation of Davies-Bouldin Index. International Conference on Science and Technology (ICST 2018), 1. https://doi.org/10.2991/icst-18.2018.148
Utomo, W. (2021). The Comparison of K-means And K-medoids Algorithms For Clustering The Spread Of The Covid-19 Outbreak in Indonesia. ILKOM Jurnal Ilmiah, 13(1), 31–35. https://doi.org/10.33096/ilkom.v13i1.763.31-35
Vebyanti YPontoh, N., Rahman, F., Yunus, R., Yunus, S., & Ferdiana Paskual, M. (2024). Analisis Dampak Pasar Ritel Modern Terhadap Pendapatan Pedagang Ritel Tradisional di Desa Wuasa Kecamatan Lore Utara. EKOMA : Jurnal Ekonomi, 3(4).
Zou, H. (2020). Clustering Algorithm and Its Application in Data Mining. Wireless Personal Communications, 110(1), 21–30. https://doi.org/10.1007/s11277-019-06709-z
DOI: https://doi.org/10.46336/ijqrm.v5i3.753
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Sekar Ghaida Muthmainah, Asep Id Hadiana, Melina Melina
This work is licensed under a Creative Commons Attribution 4.0 International License.
Published By:
IJQRM: Jalan Riung Ampuh No. 3, Riung Bandung, Kota Bandung 40295, Jawa Barat, Indonesia
IJQRM Indexed By:
Creation is distributed below Lisensi Creative Commons Atribusi 4.0 Internasional.