Investment Portfolio Optimization on Technology Sector Stocks Using Mean-Variance Model with Asset-Liability Based on ARIMA-GARCH Approach

Sania Bisyarah

Abstract


In this era of rapid technological advancement, various sectors are experiencing changes, one of which is investment. Investors are starting to turn their attention to technology sector stocks as new investment targets. However, investments are inherently linked to return and risk levels and stock prices can be highly volatile. Therefore, forming an optimal investment portfolio is very important to achieve a balance between return and risk. In addition, coping with volatile stocks is also very important. The ARIMA-GARCH time series model is a method that can be used to deal with such volatility. A popular strategy for portfolio optimization is to use the Mean-Variance model, also known as the Markowitz model. This study aims to form an optimal portfolio consisting of five technology sector stocks in Indonesia with the codes AXIO, DIVA, EDGE, MCAS, and CASH using the Mean-Variance model with assets-liabilities equipped with the ARIMA-GARCH approach. Based on the results of the study, the optimal portfolio is obtained with the composition of each weight is 23.16% of the capital allocated to AXIO; 2.95% for DIVA; 56.48% for EDGE; 6.36% for MCAS; and 11.05% for CASH. The weight allocation composition can generate a portfolio return of 0.0066 and a variance (risk) return of 0.0082.

Keywords


Portfolio optimization; Mean-Variance; ARIMA; GARCH

Full Text:

PDF

References


Alex Keel, B., & Muller, H. H. (1995). Efficient Portfolios in The Asset Liability Context. 25, 33–48.

Bakry, W., Rashid, A., Al-Mohamad, S., & El-Kanj, N. (2021). Risk and Financial Management Bitcoin and Portfolio Diversification: A Portfolio Optimization Approach. Journal of Risk and Financial Management. https://doi.org/10.3390/jrfm

Bangun, D. H., Anantadjaya, S. P. D., & Lahindah, L. (2012). Portofolio Optimal Menurut Markowitz Model dan Single Index Model: Studi Kasus Pada Indeks LQ45. JAMS-Journal of Management Studies, 01(01). www.idx.co.id

Cryer, J. D., & Chan, K.-S. (2008). Springer Texts in Statistics Time Series Analysis With Applications in R Second Edition (G. Casella, S. Fienberg, & I. Olkin, Eds.; 2nd ed.). Springer Science+Business Media.

E. P. Box, G., M. Jenkins, G., C. Reinsel, G., & M. Ljung, G. (2015). TIME SERIES ANALYSIS (D. J. Balding, N. lA. C. Cressie, G. M. Fitzmaurice, G. H. Givens, H. Goldstein, G. Molenberghs, D. W. Scott, S. F. M. Smith, R. S. Tsay, & S. Weisberg, Eds.; 5th ed.). John Wiley & Sons, Inc., Hoboken.

Gio, P. U., & Irawan, D. E. (2016). Belajar Statistika dengan R (disertai beberapa contoh perhitungan manual). www.olahdatamedan.com.

Heradhyaksa, B. (2022). Jurnal Hukum Ekonomi Islam (JHEI) Implementasi Investasi Emas Syariah Perspektif Hukum Islam ABST RAK. Jurnal Hukum Ekonomi Islam (JHEI), 6(1), 35–51. www.jhei.appheisi.or.id

Kaur, P., & Singla, R. (2022). Modelling and Forecasting Nifty 50 using Hybrid ARIMA-GARCH Model. The Review of Finance and Banking, 14, 7–20. https://doi.org/10.24818/rfb.22.14.01.01

Kim, H. (2021). Mean-variance portfolio optimization with stock return prediction using xgboost. Economic Computation and Economic Cybernetics Studies and Research, 55(4), 5–20. https://doi.org/10.24818/18423264/55.4.21.01

Lesman, E., Napitupulu, H., & Hidayat, Y. (2017). Mean-Variance Portfolio Optimization under Asset-Liability based on Time Series Approaches. International Journal of Mathematics Trends and Technology, 49. http://www.ijmttjournal.org

Majidah, I. A., Rahim, A., & Bahri, M. (2024). Mean Variance Complex-Based Portfolio Optimization. Statistics, Optimization and Information Computing, 12(5), 1382–1396. https://doi.org/10.19139/soic-2310-5070-2023

Oktavia, N. R., & Nirawati, L. (2022). Pengaruh Inflasi, Kurs USD/Rp dan BI Rate Terhadap Indeks Harga Saham Perusahaan Sektor Mining yang Terdaftar di Bursa Efek Indonesia. 7(11), 2548–1398.

Soeryana, E., Fadhlina, N., Sukono, Rusyaman, E., & Supian, S. (2017). Mean-Variance Portfolio Optimization by Using Time Series Approaches Based on Logarithmic Utility Function. IOP Conference Series: Materials Science and Engineering, 166(1). https://doi.org/10.1088/1757-899X/166/1/012003

Talumewo, S., Nainggolan, N., & Langi, Y. A. R. (2023). Penerapan Model ARIMA-GARCH Untuk Peramalan Harga Saham PT Adhi Karya (Persero) Tbk (ADHI.JK). Jurnal Matematika Dan Aplikasi, 56–1. https://ejournal.unsrat.ac.id/index.php/decartesian

Tsay, R. S. . (2002). Analysis of Financial Time Series. John Wiley & Sons, Inc.

Tsay, R. S. . (2005). Analysis of financial time series (R. Farkas, Ed.; 2nd ed.). Wiley.

Wahdania, S., Ganefi, & Sofyan, T. (2023). Tanggung Jawab Emiten Yang Delisting Terhadap Para Pemegang Saham Di Pasar Modal. Jurnal Ilmiah Kutei, 22(2), 188–200. https://doi.org/10.33369/jkutei.v22i2.31293

Wang, Y. (2024). Application of ARIMA-GARCH-S Model to Short-Term Stock Forecasting. Dean & Francis Academic Publishing, 1(Vol. 1 No. 4 (2023): Issue 4), 1. https://doi.org/doi.org/10.61173/y2k63978

Wei, W. W. S. (2006). William W.S. Wei - Time Series Analysis _ Univariate and Multivariate Methods (2nd Edition)-Addison Wesley (2005) (D. Lynch, S. Oliver, & R. Hampton, Eds.; 2nd ed.). Greg Tobin




DOI: https://doi.org/10.46336/ijqrm.v6i1.864

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Sania Bisyarah

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Published By: 

IJQRM: Jalan Riung Ampuh No. 3, Riung Bandung, Kota Bandung 40295, Jawa Barat, Indonesia

 

IJQRM Indexed By: 

width=width= width= width= width= width= width= 

 


Lisensi Creative Commons Creation is distributed below Lisensi Creative Commons Atribusi 4.0 Internasional.


View My Stats