Semantic Classification of Sentences Using SMOTE and BiLSTM
Abstract
Keywords
Full Text:
PDFReferences
Bhagat, R., & Hovy, E. (2013). What is a paraphrase? Computational Linguistics, 39(3), 463–472. https://doi.org/10.1162/coli_a_00166
Teufel, S., Siddharthan, A., & Tidhar, D. (2006). An annotation scheme for citation function. Proceedings of the 7th SIGdial Workshop on Discourse and Dialogue - SigDIAL ’06, 80. https://doi.org/10.3115/1654595.1654612
González Aguirre, A. (2017). Computational models for semantic textual similarity.
Ichida, A. Y., Meneguzzi, F., & Ruiz, D. D. (2018). Measuring semantic similarity between sentences using a Siamese neural network. 2018 International Joint Conference on Neural Networks (IJCNN), 1, 1–7. https://doi.org/10.1109/ijcnn.2018.8489433
Shi, X., & Lu, R. (2019). Attention-based bidirectional hierarchical LSTM networks for text semantic classification. 2019 10th International Conference on Information Technology in Medicine and Education (ITME). https://doi.org/10.1109/itme.2019.00143
Nurjaman, J., Ilyas, R., & Kasyidi, F. (2020, September). Pengukuran Kesamaan Semantik Pasangan Kalimat Sitasi Menggunakan Convolutional Neural Network. In Prosiding Industrial Research Workshop and National Seminar (Vol. 11, No. 1, pp. 510-516).
Besti, A., Ilyas, R., Kasyidi, F., & Djamal, E. C. (2020). Semantic classification of scientific sentence pair using recurrent neural network. 2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI), 1, 150–155. https://doi.org/10.23919/eecsi50503.2020.9251897
Siringoringo, R. (2018). Klasifikasi data tidak Seimbang menggunakan algoritma SMOTE dan k-nearest neighbor. Journal Information System Development (ISD), 3(1).
Atmadja, A. R., & Purwarianti, A. (2015). Comparison on the rule based method and statistical based method on emotion classification for Indonesian twitter text. 2015 International Conference on Information Technology Systems and Innovation (ICITSI), 2, 1–6. https://doi.org/10.1109/icitsi.2015.7437692
Sarakit, P., Theeramunkong, T., & Haruechaiyasak, C. (2015). Improving emotion classification in imbalanced YouTube dataset using smote algorithm. 2015 2nd International Conference on Advanced Informatics: Concepts, Theory and Applications (ICAICTA), 3, 1–5. https://doi.org/10.1109/icaicta.2015.7335373
Sutoyo, E., & Fadlurrahman, M. A. (2020). Penerapan SMOTE untuk Mengatasi Imbalance Class dalam Klasifikasi Television Advertisement Performance Rating Menggunakan Artificial Neural Network. JEPIN (Jurnal Edukasi dan Penelitian Informatika), 6(3), 379-385.
Ruhyana, N. A. N. A. N. G., & Rosiyadi, D. I. D. I. (2019). Klasifikasi Komentar Instagram Untuk Identifikasi Keluhan Pelanggan Jasa Pengiriman Barang Dengan Teknik Smote. Faktor Exacta, 12(4), 280-290.
Kasanah, A. N., Muladi, M., & Pujianto, U. (2019). Penerapan Teknik SMOTE untuk Mengatasi Imbalance Class dalam Klasifikasi Objektivitas Berita Online Menggunakan Algoritma KNN. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 3(2), 196-201.
Pasaribu, D. J. M., Kusrini, K., & Sudarmawan, S. (2020). Peningkatan Akurasi Klasifikasi Sentimen Ulasan Makanan Amazon dengan Bidirectional LSTM dan Bert Embedding. Inspiration: Jurnal Teknologi Informasi dan Komunikasi, 10(1), 9-20.
Cai, R., Qin, B., Chen, Y., Zhang, L., Yang, R., Chen, S., & Wang, W. (2020). Sentiment analysis about investors and consumers in energy market based on Bert-BILSTM. IEEE Access, 8, 171408–171415. https://doi.org/10.1109/access.2020.3024750
Song, Y., Tian, S., & Yu, L. (2020). A method for identifying local drug names in Xinjiang based on Bert-BILSTM-CRF. Automatic Control and Computer Sciences, 54(3), 179–190. https://doi.org/10.3103/s0146411620030098
Mikolov, T. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
Mikolov, T., Yih, W. T., & Zweig, G. (2013, June). Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies (pp. 746-751).
Jatnika, D., Bijaksana, M. A., & Suryani, A. A. (2019). Word2Vec model analysis for semantic similarities in English words. Procedia Computer Science, 157, 160–167. https://doi.org/10.1016/j.procs.2019.08.153
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems, 26.
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). Smote: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321–357. https://doi.org/10.1613/jair.953
Melina, Sukono, Napitupulu, H., Sambas, A., Murniati, A., & Kusumaningtyas, V. A. (2022). Artificial Neural Network-Based Machine Learning Approach to Stock Market Prediction Model on the Indonesia Stock Exchange During the COVID-19. Engineering Letters, 30(3).
Melina, M., Sukono, Napitupulu, H., & Mohamed, N. (2024). Modeling of machine learning-based extreme value theory in stock investment risk prediction: A systematic literature review. Big Data. https://doi.org/10.1089/big.2023.0004.
DOI: https://doi.org/10.46336/ijqrm.v5i3.750
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Irvan Tanjung, Rid Ilyas, Melina Melina
This work is licensed under a Creative Commons Attribution 4.0 International License.
Published By:
IJQRM: Jalan Riung Ampuh No. 3, Riung Bandung, Kota Bandung 40295, Jawa Barat, Indonesia
IJQRM Indexed By:
Creation is distributed below Lisensi Creative Commons Atribusi 4.0 Internasional.