Comparative Analysis of K-Means and K-Medoids Clustering in Retail Store Product Grouping

Sekar Ghaida Muthmainah, Asep Id Hadiana, Melina Melina

Abstract


The retail business is growing very rapidly with increasing business competition. The application of information technology is one strategy for understanding consumer product purchasing patterns and grouping sales products. This research aims to analyze and compare the K-Means and K-Medoids Clustering techniques for retail data based on the Davies Bouldin Index value and computing time. K-Means is an algorithm that divides data into k clusters based on centroids, while K-Medoids Clustering uses objects with medoids representing clusters as centroid centers. Clustering in both methods produces an optimal number of clusters of 3 clusters. The results of this research show that K-Means produced 358 data in Cluster 1, 292 data in Cluster 2, and 367 data in Cluster 3 with a DBI of 0.7160. Meanwhile, K-Medoids produced 295 data in Cluster 1, 360 data in Cluster 2, and 362 data in Cluster 3 with a DBI of 0.7153. In addition, this study calculated the average computation from 5 experiments, namely K-Means with an average time of 0.024278/s and K-Medoids of 0.05719/s. Based on the lower DBI, K-Medoids have better results in clustering, but the K-Means method is better in terms of computational efficiency. It is hoped that the results of this research will provide valuable insights for retail business people in analyzing sales data.

Full Text:

PDF

References


Anjani, R. G. (2019). Peran Sistem Informasi Terhadap Operasional Retail. Jurnal Ekonomi Dan Manajemen Sistem Informasi (JEMSI), 1(September), 60–69. https://doi.org/10.31933/JEMSI

Arora, P., Deepali, & Varshney, S. (2016). Analysis of K-Means and K-Medoids Algorithm for Big Data. International Conference on Information Security & Privacy (ICISP), 78, 507–512. https://doi.org/10.1016/j.procs.2016.02.095

Bradlow, E. T., Gangwar, M., Kopalle, P., & Voleti, S. (2017). The Role of Big Data and Predictive Analytics in Retailing. Journal of Retailing, 93(1), 79–95. https://doi.org/10.1016/j.jretai.2016.12.004

Diana, Y., Hadi, F., Ekonomi, F., Bisnis, D., Putra Indonesia, U., Padang, Y., Lubuk, J. R., & Padang, B. (2023). Analisa Penjualan Menggunakan Algoritma K-Medoids Untuk Mengoptimalkan Penjualan Barang. JOISIE Journal Of Information System And Informatics Engineering, 7(1), 97–103.

Fatmawati, K., & Windarto, A. P. (2018). Data Mining: Penerapan Rapidminer Dengan K-Means Cluster Pada Daerah Terjangkit Demam Berdarah Dengue (Dbd) Berdasarkan Provinsi. Computer Engineering, Science and System Journal, 3(2), 173. https://doi.org/10.24114/cess.v3i2.9661

Gupta, A., Sharma, H., & Akhtar, A. (2021). A Comparative Analysis Of K-Means And Hierarchical Clustering. EPRA International Journal of Multidisciplinary Research (IJMR), 7(8). https://doi.org/10.36713/epra2013

Gustrianda, R., & Mulyana, D. I. (2022). Penerapan Data Mining Dalam Pemilihan Produk Unggulan dengan Metode Algoritma K-Means Dan K-Medoids. Jurnal Media Informatika Budidarma, 6(1), 27. https://doi.org/10.30865/mib.v6i1.3294

Hadi, F., & Diana, Y. (2020). Pengklusteran Penjualan Bahan Bangunan Menggunakan Algoritma K-Means. JOISIE (Journal Of Information Systems And Informatics Engineering), 4(1), 22. https://doi.org/10.35145/joisie.v4i1.629

Hoerunnisa, A., Dwilestari, G., Dikananda, F., Sunana, H., & Pratama, D. (2024). Komparasi Algoritma K-Means Dan K-Medoids Dalam Analisis Pengelompokan Daerah Rawan Kriminalitas Di Indonesia. Jurnal Mahasiswa Teknik Informatika, 8(1). https://doi.org/https://doi.org/10.36040/jati.v8i1.8249

Intan, S. F., Elvira, W., Rahayu, S., & ... (2023). Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan Pengeluaran Mahasiswa. SENTIMAS : Seminar Nasional Penelitian Dan Pengabdian Masyarakat, 35–40. https://journal.irpi.or.id/index.php/sentimas/article/view/543

Khanbabaei, M., Alborzi, M., Sobhani, F. M., & Radfar, R. (2019). Applying clustering and classification data mining techniques for competitive and knowledge-intensive processes improvement. Journal of Corporate Transformation, 26(2), 123–139. https://doi.org/10.1002/kpm.1595

Mayadi, Setiawati, S., & Priatna, W. (2023). Pengelompokan Hasil Survei MBKM Menggunakan K-Mean dan K-Medoids Clustering. Jurnal Media Informatika Budidarma, 7. https://doi.org/10.30865/mib.v7i1.5003

Melina, Napitupulu, H., Sambas, A., Murniati, A., & Adimurti Kusumaningtyas, V. (2022). Artificial Neural Network-Based Machine Learning Approach to Stock Market Prediction Model on the Indonesia Stock Exchange During the COVID-19. Engineering Letters, 30(3). https://www.researchgate.net/publication/362983602

Mousavi, S., Boroujeni, F. Z., & Aryanmehr, S. (2020). Improving customer clustering by optimal selection of cluster centroids in K-means and K-medoids algorithms. Journal of Theoretical and Applied Information Technology, 8(10), 3807–3814.

Murpratiwi, S. I., Agung Indrawan, I. G., & Aranta, A. (2021). Analisis Pemilihan Cluster Optimal Dalam Segmentasi Pelanggan Toko Retail. Jurnal Pendidikan Teknologi Dan Kejuruan, 18(2), 152. https://doi.org/10.23887/jptk-undiksha.v18i2.37426

Nabila, Z., Rahman Isnain, A., & Abidin, Z. (2021). Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means. Jurnal Teknologi Dan Sistem Informasi (JTSI), 2(2), 100. http://jim.teknokrat.ac.id/index.php/JTSI

Nadiyah, Arifin, N. H. I., & Karim, A. (2024). Penerapan Algoritma K-Means Untuk Clustering Penilaian Layanan Berdasarkan Indeks Kepuasan Mahasiswa Universitas Nurul Jadid. Jurnal Advance Research Informatika, 2, 23–30. https://doi.org/10.24929/jars.v2i2.3431

Nishom, M. (2019). Perbandingan Akurasi Euclidean Distance, Minkowski Distance, dan Manhattan Distance pada Algoritma K-Means Clustering berbasis Chi-Square. Jurnal Informatika: Jurnal Pengembangan IT, 4(1), 20–24. https://doi.org/10.30591/jpit.v4i1.1253

Ong, J. O., Sutawijaya, A. H., & Saluy, A. B. (2020). Strategi Inovasi Model Bisnis Ritel Modern Di Era Industri 4.0. Jurnal Ilmiah Manajemen Bisnis, 6(2), 201–210. https://doi.org/https://dx.doi.org/10.22441/jimb.v6i2.8891

Putra, R. R., & Wadisman, C. (2018). Implementasi Data Mining Pemilihan Pelanggan Potensial Menggunakan Algoritma K-Means. INTECOMS (Journal of Information Technology and Computer Science, 151(2), 10–17. https://doi.org/10.31539/intecoms.v1i1.141

Ramadhani, S., Azzahra, D., & Z, T. (2022). Comparison of K-Means and K-Medoids Algorithms in Text Mining based on Davies Bouldin Index Testing for Classification of Student’s Thesis. Digital Zone: Jurnal Teknologi Informasi Dan Komunikasi, 13(1), 24–33. https://doi.org/10.31849/digitalzone.v13i1.9292

Sani, A. (2018). Penerapan Metode K-Means Clustering Pada Perusahaan. Jurnal Ilmiah Teknologi Informasi, May, 1–7.

Septiani, S., Musthofa, & Seviawani, P. (2024). Penggunaan Big Data untuk Personalisasi Layanan dalam Bisnis E-Commerce. ADI Bisnis Digital Interdisiplin Jurnal, 5(1), 51–57. https://doi.org/10.34306/abdi.v5i1.1098

Setiawan, R. (2016). Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Untuk Menentukan Strategi Promosi Mahasiswa Baru (Studi Kasus : Politeknik Lp3i Jakarta). Jurnal Lentera ICT, 3(1), 76–92.

Takdirillah, R. (2020). Penerapan Data Mining Menggunakan Algoritma Apriori Terhadap Data Transaksi Sebagai Pendukung Informasi Strategi Penjualan. Edumatic : Jurnal Pendidikan Informatika, 4(1), 37–46. https://doi.org/10.29408/edumatic.v4i1.2081

Tarigan, D. A. (2023). Optimization of the K-Means Clustering Algorithm Using Davies Bouldin Index in Iris Data Classification. Kajian Ilmiah Informatika Dan Komputer (KLIK), 4(1), 545–552. https://doi.org/10.30865/klik.v4i1.964

Tempola, F., & Assagaf, A. F. (2018). Clustering of Potency of Shrimp in Indonesia with K-Means Algorithm and Validation of Davies-Bouldin Index. International Conference on Science and Technology (ICST 2018), 1. https://doi.org/10.2991/icst-18.2018.148

Utomo, W. (2021). The Comparison of K-means And K-medoids Algorithms For Clustering The Spread Of The Covid-19 Outbreak in Indonesia. ILKOM Jurnal Ilmiah, 13(1), 31–35. https://doi.org/10.33096/ilkom.v13i1.763.31-35

Vebyanti YPontoh, N., Rahman, F., Yunus, R., Yunus, S., & Ferdiana Paskual, M. (2024). Analisis Dampak Pasar Ritel Modern Terhadap Pendapatan Pedagang Ritel Tradisional di Desa Wuasa Kecamatan Lore Utara. EKOMA : Jurnal Ekonomi, 3(4).

Zou, H. (2020). Clustering Algorithm and Its Application in Data Mining. Wireless Personal Communications, 110(1), 21–30. https://doi.org/10.1007/s11277-019-06709-z




DOI: https://doi.org/10.46336/ijqrm.v5i3.753

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Sekar Ghaida Muthmainah, Asep Id Hadiana, Melina Melina

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Published By: 

IJQRM: Jalan Riung Ampuh No. 3, Riung Bandung, Kota Bandung 40295, Jawa Barat, Indonesia

 

IJQRM Indexed By: 

width= width= width= width= width= width= 

 


Lisensi Creative Commons Creation is distributed below Lisensi Creative Commons Atribusi 4.0 Internasional.


View My Stats